Wang Xianjin, Wang Shuo, Song Silin, Chen Yasu, Sun Hao, Zhu Chen
Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study, and Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
Sci Adv. 2024 Sep 27;10(39):eadp7385. doi: 10.1126/sciadv.adp7385.
Radical polymerization is a powerful technique for producing a variety of polymeric materials. However, the chain transfer reaction impedes the formation of polymers from many common α-olefins such as propene and 1-butene using this method. Consequently, poly(α-olefins) are predominantly produced via coordination polymerization. To address this limitation, we have devised a strategy involving group transfer radical polymerization (GTRP) to facilitate the radical homopolymerization to access carbon-chain poly(α-olefins). This approach enables the precise construction of a diverse array of carbon-chain poly(α-olefins) with high molecular weights. Furthermore, by using nonconventional monomers, we extend the applicability of this technique to the copolymerization of α-olefins with acrylonitrile, paving the way for the synthesis of copolymers with different monomers. To investigate the properties of the polymers obtained by this method, one of the poly(α-olefins) is studied as an interphase layer material in anode-free Li metal batteries, and the results indicate the potential of the polymer in energy storage applications.
自由基聚合是制备各种聚合物材料的一种强大技术。然而,链转移反应阻碍了使用这种方法从许多常见的α-烯烃(如丙烯和1-丁烯)形成聚合物。因此,聚(α-烯烃)主要通过配位聚合生产。为了解决这一限制,我们设计了一种涉及基团转移自由基聚合(GTRP)的策略,以促进自由基均聚反应,从而获得碳链聚(α-烯烃)。这种方法能够精确构建各种具有高分子量的碳链聚(α-烯烃)。此外,通过使用非常规单体,我们将该技术的适用性扩展到α-烯烃与丙烯腈的共聚反应,为合成含有不同单体的共聚物铺平了道路。为了研究通过这种方法获得的聚合物的性能,其中一种聚(α-烯烃)被作为无阳极锂金属电池的界面层材料进行研究,结果表明该聚合物在储能应用中的潜力。