Lian Meng, Geng Yue, Chen Yin-Jie, Chen Yuntian, Lü Jing-Tao
School of Physics, Institute for Quantum Science and Engineering and Wuhan National High Magnetic Field Center, <a href="https://ror.org/00p991c53">Huazhong University of Science and Technology</a>, Wuhan 430074, China.
School of Optical and Electronic Information, <a href="https://ror.org/00p991c53">Huazhong University of Science and Technology</a>, Wuhan 430074, China.
Phys Rev Lett. 2024 Sep 13;133(11):116303. doi: 10.1103/PhysRevLett.133.116303.
In isolated nonlinear optical waveguide arrays, simultaneous conservation of longitudinal momentum flow ("internal energy") and optical power ("particle number") of the optical modes enables study of coupled thermal and particle transport in the negative temperature regime. Based on exact numerical simulation and rationale from Landauer formalism, we predict generic photonic version of the Wiedemann-Franz law in such systems, with the Lorenz number L∝|T|^{-2}. This is rooted in the spectral decoupling of thermal and particle current, and their different temperature dependence. In addition, in asymmetric junctions, relaxation of the system toward equilibrium shows apparent asymmetry for positive and negative biases, indicating rectification behavior. This Letter illustrates the possibility of simulate nonequilibrium transport processes using optical networks, in parameter regimes difficult to reach in natural condensed matter or atomic gas systems. It also provides new insights in manipulating power and momentum flow of optical waves in artificial waveguide arrays.
在孤立的非线性光波导阵列中,光模式的纵向动量流(“内能”)和光功率(“粒子数”)的同时守恒使得能够研究负温度 regime 下的耦合热传输和粒子传输。基于精确的数值模拟和朗道尔形式主义的原理,我们预测了此类系统中维德曼 - 夫兰兹定律的通用光子版本,其中洛伦兹数(L∝|T|^{-2})。这源于热流和粒子流的光谱解耦以及它们不同的温度依赖性。此外,在非对称结中,系统向平衡态的弛豫对于正偏压和负偏压表现出明显的不对称性,表明存在整流行为。本 Letter 说明了在自然凝聚态物质或原子气体系统难以达到的参数 regime 中使用光学网络模拟非平衡传输过程的可能性。它还为在人工光波导阵列中操纵光波的功率和动量流提供了新的见解。