Ali Zafar, Talpur Farah Naz, Afridi Hassan Imran, Ahmed Farooq, Brohi Nazir A, Abbasi Habibullah
National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro 76080, Sindh, Pakistan; Chemistry Department, University of Turbat, Balochistan 92600, Pakistan.
National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro 76080, Sindh, Pakistan.
Spectrochim Acta A Mol Biomol Spectrosc. 2025 Feb 5;326:125164. doi: 10.1016/j.saa.2024.125164. Epub 2024 Sep 20.
Accurately determining fiber composition is essential for optimizing material properties across diverse applications in textiles, composites, packaging, and other bio-based materials. Fiber performance in textiles, composites, and bio-based materials depends upon their intricate composition. This review explores advanced analytical techniques for the comprehensive characterization of natural (cellulose-hemicellulose-lignin) and synthetic (polymeric) fibers. Natural fibers primarily consist of cellulose, hemicellulose, and lignin, while synthetic fibers are formed by linking small monomer units, such as nylon, polyester, and acrylics.
A variety of analytical methods are employed for fiber composition analysis, including microscopy, spectroscopy, chromatography, thermal analysis, and wet chemical methods. A multi-modal approach employing advanced techniques is essential for in-depth fiber analysis. Spectroscopic methods like Fourier Transform Infrared Spectroscopy (FTIR) offer rapid, non-destructive determination of chemical functionalities. Near-infrared spectroscopy (NIR) offers another efficient approach, particularly when integrated with chemometric techniques like Principal Component Regression (PCR) and Partial Least Squares (PLS) for precise quantification of cellulose, hemicellulose, and lignin. Additionally, thermal analysis methods such as Thermogravimetric Analysis (TGA), Differential Scanning Calorimetry (DSC), and Dynamic Mechanical Analysis (DMA) provide insights into thermal stability and mechanical characteristics of fibers.
This review emphasizes the importance of an integrated approach utilizing various analytical methods for comprehensive fiber characterization. While traditional wet chemical methods offer limited advantages, the combined use of advanced techniques provides a more holistic understanding of fiber properties. As technology evolves, this integrated approach is expected to shape the future of fiber analysis and its applications across diverse industries.
准确测定纤维成分对于优化纺织品、复合材料、包装材料及其他生物基材料等多种应用中的材料性能至关重要。纺织品、复合材料和生物基材料中的纤维性能取决于其复杂的成分。本综述探讨了用于全面表征天然(纤维素 - 半纤维素 - 木质素)和合成(聚合物)纤维的先进分析技术。天然纤维主要由纤维素、半纤维素和木质素组成,而合成纤维是通过连接小的单体单元形成的,如尼龙、聚酯和腈纶。
多种分析方法用于纤维成分分析,包括显微镜法、光谱法、色谱法、热分析和湿化学方法。采用先进技术的多模态方法对于深入的纤维分析至关重要。傅里叶变换红外光谱(FTIR)等光谱方法能够快速、无损地测定化学官能团。近红外光谱(NIR)提供了另一种有效方法,特别是与主成分回归(PCR)和偏最小二乘法(PLS)等化学计量技术结合使用时,可精确量化纤维素、半纤维素和木质素。此外,热重分析(TGA)、差示扫描量热法(DSC)和动态力学分析(DMA)等热分析方法可深入了解纤维的热稳定性和力学特性。
本综述强调了采用多种分析方法进行综合纤维表征的综合方法的重要性。虽然传统的湿化学方法优势有限,但先进技术的联合使用能更全面地了解纤维性能。随着技术的发展,这种综合方法有望塑造纤维分析及其在不同行业应用的未来。