Suppr超能文献

OS-SSVEP:单次 SSVEP 分类。

OS-SSVEP: One-shot SSVEP classification.

机构信息

School of Biomedical Engineering, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230026, China; Center for Medical Imaging, Robotics, Analytic Computing & Learning (MIRACLE), Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu, 215123, China.

College of Artificial Intelligence, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China.

出版信息

Neural Netw. 2024 Dec;180:106734. doi: 10.1016/j.neunet.2024.106734. Epub 2024 Sep 25.

Abstract

It is extremely challenging to classify steady-state visual evoked potentials (SSVEPs) in scenarios characterized by a huge scarcity of calibration data where only one calibration trial is available for each stimulus target. To address this challenge, we introduce a novel approach named OS-SSVEP, which combines a dual domain cross-subject fusion network (CSDuDoFN) with the task-related and task-discriminant component analysis (TRCA and TDCA) based on data augmentation. The CSDuDoFN framework is designed to comprehensively transfer information from source subjects, while TRCA and TDCA are employed to exploit the information from the single available calibration trial of the target subject. Specifically, CSDuDoFN uses multi-reference least-squares transformation (MLST) to map data from both the source subjects and the target subject into the domain of sine-cosine templates, thereby reducing cross-subject domain gap and benefiting transfer learning. In addition, CSDuDoFN is fed with both transformed and original data, with an adequate fusion of their features occurring at different network layers. To capitalize on the calibration trial of the target subject, OS-SSVEP utilizes source aliasing matrix estimation (SAME)-based data augmentation to incorporate into the training process of the ensemble TRCA (eTRCA) and TDCA models. Ultimately, the outputs of CSDuDoFN, eTRCA, and TDCA are combined for the SSVEP classification. The effectiveness of our proposed approach is comprehensively evaluated on three publicly available SSVEP datasets, achieving the best performance on two datasets and competitive performance on the third. Further, it is worth noting that our method follows a different technical route from the current state-of-the-art (SOTA) method and the two are complementary. The performance is significantly improved when our method is combined with the SOTA method. This study underscores the potential to integrate the SSVEP-based brain-computer interface (BCI) into daily life. The corresponding source code is accessible at https://github.com/Sungden/One-shot-SSVEP-classification.

摘要

在仅为每个刺激目标提供一次校准试验的情况下,对稳态视觉诱发电位 (SSVEP) 进行分类极具挑战性,这种情况下校准数据极其匮乏。为了应对这一挑战,我们引入了一种名为 OS-SSVEP 的新方法,它结合了双域跨主体融合网络 (CSDuDoFN) 以及基于数据增强的任务相关和任务判别成分分析 (TRCA 和 TDCA)。CSDuDoFN 框架旨在全面从源主体传输信息,而 TRCA 和 TDCA 则用于利用目标主体单个可用校准试验中的信息。具体来说,CSDuDoFN 使用多参考最小二乘变换 (MLST) 将来自源主体和目标主体的数据映射到正弦余弦模板域,从而减少跨主体域差距并受益于迁移学习。此外,CSDuDoFN 同时接收变换后和原始数据,并在不同网络层对它们的特征进行充分融合。为了充分利用目标主体的校准试验,OS-SSVEP 利用源混淆矩阵估计 (SAME) 基于的数据增强将其纳入集成 TRCA (eTRCA) 和 TDCA 模型的训练过程中。最终,CSDuDoFN、eTRCA 和 TDCA 的输出被组合用于 SSVEP 分类。我们的方法在三个公开的 SSVEP 数据集上进行了全面评估,在两个数据集上取得了最佳性能,在第三个数据集上也取得了有竞争力的性能。此外,值得注意的是,我们的方法与当前的最先进 (SOTA) 方法采用了不同的技术路线,两者是互补的。当我们的方法与 SOTA 方法结合使用时,性能显著提高。这项研究强调了将基于 SSVEP 的脑机接口 (BCI) 集成到日常生活中的潜力。相应的源代码可在 https://github.com/Sungden/One-shot-SSVEP-classification 上获得。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验