Institute of AI for Health, Helmholtz Zentrum München-German Research Center for Environmental Health, 85764 Neuherberg, Germany.
Helmholtz Pioneer Campus, Helmholtz Zentrum München-German Research Center for Environmental Health, 85764 Neuherberg, Germany.
Genome Res. 2024 Oct 11;34(9):1276-1285. doi: 10.1101/gr.279252.124.
Accurate predictive models of future disease onset are crucial for effective preventive healthcare, yet longitudinal data sets linking early risk factors to subsequent health outcomes are limited. To overcome this challenge, we introduce a novel framework, redictive sk modeling using ndelian andomization (PRiMeR), which utilizes genetic effects as supervisory signals to learn disease risk predictors without relying on longitudinal data. To do so, PRiMeR leverages risk factors and genetic data from a healthy cohort, along with results from genome-wide association studies of diseases of interest. After training, the learned predictor can be used to assess risk for new patients solely based on risk factors. We validate PRiMeR through comprehensive simulations and in future type 2 diabetes predictions in UK Biobank participants without diabetes, using follow-up onset labels for validation. Moreover, we apply PRiMeR to predict future Alzheimer's disease onset from brain imaging biomarkers and future Parkinson's disease onset from accelerometer-derived traits. Overall, with PRiMeR we offer a new perspective in predictive modeling, showing it is possible to learn risk predictors leveraging genetics rather than longitudinal data.
准确预测未来疾病的发病时间对于有效的预防保健至关重要,但将早期风险因素与后续健康结果联系起来的纵向数据集有限。为了克服这一挑战,我们引入了一种新的框架,即使用孟德尔随机化的预测建模(PRiMeR),该框架利用遗传效应作为监督信号,在不依赖纵向数据的情况下学习疾病风险预测因子。为此,PRiMeR 利用来自健康队列的风险因素和遗传数据,以及相关疾病的全基因组关联研究的结果。训练完成后,该学习到的预测因子可以仅基于风险因素来评估新患者的风险。我们通过全面的模拟和在 UK Biobank 无糖尿病参与者中的未来 2 型糖尿病预测中验证了 PRiMeR,使用后续发病标签进行验证。此外,我们应用 PRiMeR 从脑成像生物标志物预测未来的阿尔茨海默病发病,从加速度计衍生特征预测未来的帕金森病发病。总体而言,通过 PRiMeR,我们提供了预测建模的新视角,表明利用遗传学而不是纵向数据学习风险预测因子是可行的。