Ono Yudai, Hirao Takehiro, Kawata Naomi, Haino Takeharu
Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan.
International Institute for Sustainability with Knotted Chiral Meta Matter (WPI-SKCM²), Hiroshima University, 2-313 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-0046, Japan.
Nat Commun. 2024 Sep 27;15(1):8314. doi: 10.1038/s41467-024-52526-9.
Interest in developing separation systems for chemical entities based on crystalline molecules has provided momentum for the fabrication of synthetic porous materials showing selectivity in molecular encapsulation, such as metal-organic frameworks, covalent organic frameworks, hydrogen-bonded organic frameworks, zeolites, and macrocyclic molecular crystals. Among these, macrocyclic molecular crystals have generated renewed interest for use in separation systems. Selective encapsulation relies on the sizes, shapes, and dimensions of the pores present in the macrocyclic cavities; thus, nonmacrocyclic molecular crystals with high selectivity for molecular encapsulation via porosity-without-pore behaviors have not been studied. Here, we report that planar tris(phenylisoxazolyl)benzene forms porous molecular crystals possessing latent pores exhibiting porosity-without-pore behavior. After exposing the crystals to complementary guest molecules, the latent pores encapsulate cis- and trans-decalin while maintaining the structural rigidity responsible for the high selectivity. The encapsulation via porosity without pores is a kinetic process with remarkable selectivity for cis-decalin over trans-decalin with a cis-/trans-ratio of 96:4, which is confirmed by single-crystal X-ray diffraction and powder X-ray diffraction analyses. Hirshfeld surface analysis and fingerprint plots show that the latent intermolecular pores are rigidified by intermolecular dipole‒dipole and π-π stacking interactions, which determines the remarkable selectivity of molecular recognition.
基于结晶分子开发化学实体分离系统的研究兴趣,为制备在分子包封方面具有选择性的合成多孔材料提供了动力,这些材料包括金属有机框架、共价有机框架、氢键有机框架、沸石和大环分子晶体。其中,大环分子晶体在分离系统中的应用重新引起了人们的兴趣。选择性包封依赖于大环腔内存在的孔的尺寸、形状和维度;因此,通过无孔孔隙行为对分子包封具有高选择性的非大环分子晶体尚未得到研究。在此,我们报道平面三(苯基异恶唑基)苯形成了具有潜在孔的多孔分子晶体,这些潜在孔表现出无孔孔隙行为。将晶体暴露于互补客体分子后,潜在孔包封顺式和反式十氢化萘,同时保持负责高选择性的结构刚性。通过无孔孔隙进行的包封是一个动力学过程,对顺式十氢化萘的选择性明显高于反式十氢化萘,顺式/反式比例为96:4,这通过单晶X射线衍射和粉末X射线衍射分析得到证实。 Hirshfeld表面分析和指纹图谱表明,潜在的分子间孔通过分子间偶极-偶极和π-π堆积相互作用而刚性化,这决定了分子识别的显著选择性。