Suppr超能文献

原子分辨 Pt 团簇的原子级应变工程超越天然酶。

Atomic-scale strain engineering of atomically resolved Pt clusters transcending natural enzymes.

机构信息

Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China.

Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin, China.

出版信息

Nat Commun. 2024 Sep 27;15(1):8346. doi: 10.1038/s41467-024-52684-w.

Abstract

Strain engineering plays an important role in tuning electronic structure and improving catalytic capability of biocatalyst, but it is still challenging to modify the atomic-scale strain for specific enzyme-like reactions. Here, we systematically design Pt single atom (Pt), several Pt atoms (Pt) and atomically-resolved Pt clusters (Ptc) on PdAu biocatalysts to investigate the correlation between atomic strain and enzyme-like catalytic activity by experimental technology and in-depth Density Functional Theory calculations. It is found that Ptc on PdAu (Ptc-PA) with reasonable atomic strain upshifts the d-band center and exposes high potential surface, indicating the sufficient active sites to achieve superior biocatalytic performances. Besides, the Pd shell and Au core serve as storage layers providing abundant energetic charge carriers. The Ptc-PA exhibits a prominent peroxidase (POD)-like activity with the catalytic efficiency (K/K) of 1.50 × 10 mM min, about four orders of magnitude higher than natural horseradish peroxidase (HRP), while catalase (CAT)-like and superoxide dismutase (SOD)-like activities of Ptc-PA are also comparable to those of natural enzymes. Biological experiments demonstrate that the detection limit of the Ptc-PA-based catalytic detection system exceeds that of visual inspection by 132-fold in clinical cancer diagnosis. Besides, Ptc-PA can reduce multi-organ acute inflammatory damage and mitigate oxidative stress disorder.

摘要

应变工程在调节生物催化剂的电子结构和提高催化性能方面起着重要作用,但仍然难以对特定酶样反应进行原子级应变修饰。在这里,我们通过实验技术和深入的密度泛函理论计算,系统地设计了负载在 PdAu 生物催化剂上的 Pt 单原子 (Pt)、几个 Pt 原子 (Pt) 和原子分辨的 Pt 团簇 (Ptc),以研究原子应变与酶样催化活性之间的相关性。结果发现,具有合理原子应变的 PdAu 上的 Ptc (Ptc-PA) 上移了 d 带中心并暴露了高势能表面,表明具有足够的活性位点来实现优异的生物催化性能。此外,Pd 壳和 Au 核作为存储层提供了丰富的能量电荷载流子。Ptc-PA 表现出显著的过氧化物酶 (POD) 样活性,催化效率 (K/K) 为 1.50×10 mM min,比天然辣根过氧化物酶 (HRP) 高四个数量级,而 Ptc-PA 的过氧化氢酶 (CAT) 样和超氧化物歧化酶 (SOD) 样活性也可与天然酶相媲美。生物学实验表明,基于 Ptc-PA 的催化检测系统的检测限在临床癌症诊断中比肉眼观察提高了 132 倍。此外,Ptc-PA 可以减轻多器官急性炎症损伤并减轻氧化应激障碍。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6812/11436958/8349dd0c21ff/41467_2024_52684_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验