Suppr超能文献

一种用于必要观测以减少气溶胶气候强迫不确定性的机器学习范式。

A machine learning paradigm for necessary observations to reduce uncertainties in aerosol climate forcing.

作者信息

Redemann Jens, Gao Lan

机构信息

School of Meteorology, University of Oklahoma, Norman, OK, USA.

出版信息

Nat Commun. 2024 Sep 27;15(1):8343. doi: 10.1038/s41467-024-52747-y.

Abstract

Uncertainties in estimates of climate cooling by anthropogenic aerosols have not decreased significantly in the last two decades, partly because observational constraints on crucial aerosol properties simulated in Earth System Models are insufficient. To help address this insufficiency in aerosol observations, we describe a paradigm for deriving higher-level aerosol properties with machine learning algorithms that use only lidar observations and reanalysis data as predictors. Our paradigm employs high-accuracy suborbital lidar and collocated in situ measurements to train and test two fully-connected neural network algorithms. We use two lidar data sets as input to our machine learning algorithms. The first data set consists of suborbital lidar observations not previously used in the training of the machine learning algorithms. The second data set consists of simulated UV-only observations to preview the algorithms' predictive capabilities in anticipation of data from the ATmospheric LIDar system on the EarthCARE satellite, which was launched in May 2024. Here we show that our algorithms predict two crucial aerosol properties, aerosol light absorption and cloud condensation nuclei concentrations with unprecedented accuracy, yielding mean relative errors of 21% and 13%, respectively, when suborbital lidar data are used as predictors. These errors represent significant improvements over conventional aerosol retrievals. Applied to future satellite missions, the paradigm presented here has great potential for constraining Earth System Models and reducing uncertainties in their estimates of aerosol climate forcing and future global warming.

摘要

在过去二十年中,人为气溶胶对气候冷却的估计不确定性并未显著降低,部分原因是地球系统模型中模拟的关键气溶胶特性的观测约束不足。为了帮助解决气溶胶观测方面的这一不足,我们描述了一种使用机器学习算法推导更高级别气溶胶特性的范例,该算法仅使用激光雷达观测数据和再分析数据作为预测因子。我们的范例采用高精度亚轨道激光雷达和并置的现场测量数据来训练和测试两种全连接神经网络算法。我们使用两个激光雷达数据集作为机器学习算法的输入。第一个数据集由以前未用于机器学习算法训练的亚轨道激光雷达观测数据组成。第二个数据集由仅模拟的紫外线观测数据组成,以在预期2024年5月发射的地球关怀卫星上的大气激光雷达系统的数据之前,预览算法的预测能力。在这里,我们表明我们的算法以前所未有的精度预测了两种关键的气溶胶特性,即气溶胶光吸收和云凝结核浓度,当使用亚轨道激光雷达数据作为预测因子时,平均相对误差分别为21%和13%。这些误差相比传统的气溶胶反演有显著改善。应用于未来的卫星任务,本文提出的范例在约束地球系统模型以及减少其对气溶胶气候强迫和未来全球变暖估计的不确定性方面具有巨大潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d3b8/11437084/4f926469c2a6/41467_2024_52747_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验