Electrical and Computer Engineering, Rice University, Houston, TX, USA.
Sansum Diabetes Research Institute, Santa Barbara, CA, USA.
Sci Rep. 2024 Sep 27;14(1):22098. doi: 10.1038/s41598-024-72837-7.
The discrepancy between estimated glycemia from HbA values and actual average glucose (AG) levels has significant implications for treatment decisions and patient understanding. Factors contributing to the gap include red blood cell (RBC) lifespan and glucose uptake into the RBC. Personalized models have been proposed to enhance AG prediction accuracy by considering interpersonal variation. This study contributes to our understanding of personalized models for estimating AG from HbA. Utilizing data from seven studies (340 participants), including Hispanic/Latino populations with or at risk of non-insulin-treated type 2 diabetes (T2D), we examined kinetic features across cohorts. Additionally, the study simulated scenarios to understand data requirements for improving accuracy. Personalized approaches improved agreement between AG estimations and CGM-AG, particularly with four or more weeks of training CGM data. A multiple linear regression model using kinetic parameters and added clinical features was shown to improve the accuracy of personalized models further. As CGM usage extends beyond type 1 diabetes, there is growing interest in leveraging CGM data for clinical decision-making. Patient-specific models offer a valuable tool for managing glycemic status in patients with discordant HbA and AG values.
HbA 值估计的血糖值与实际平均血糖 (AG) 水平之间的差异对治疗决策和患者理解具有重要意义。导致这种差异的因素包括红细胞 (RBC) 的寿命和葡萄糖进入 RBC 的摄取。个性化模型已被提出,通过考虑人际间的差异来提高 AG 预测的准确性。本研究有助于我们了解从 HbA 估算 AG 的个性化模型。利用来自 7 项研究(340 名参与者)的数据,包括有或有非胰岛素治疗 2 型糖尿病(T2D)风险的西班牙裔/拉丁裔人群,我们跨队列检查了动力学特征。此外,该研究还模拟了场景,以了解改善准确性所需的数据。个性化方法提高了 AG 估计值与 CGM-AG 之间的一致性,尤其是使用了 4 周或更长时间的训练 CGM 数据。使用动力学参数和附加临床特征的多元线性回归模型进一步提高了个性化模型的准确性。随着 CGM 在 1 型糖尿病之外的应用不断扩展,人们对利用 CGM 数据进行临床决策的兴趣日益浓厚。患者特异性模型为管理 HbA 和 AG 值不一致的患者的血糖状态提供了一种有价值的工具。