Suppr超能文献

识别和描述最能从多基因风险评分中受益的疾病亚群。

Identifying and characterizing disease subpopulations that most benefit from polygenic risk scores.

机构信息

Department of Bioinformatics, Georgia Institute of Technology, Atlanta, GA, 30332, USA.

School of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30322, USA.

出版信息

Sci Rep. 2024 Sep 27;14(1):22124. doi: 10.1038/s41598-024-63705-5.

Abstract

Polygenic risk scores (PRSs) hold promise in their potential translation into clinical settings to improve disease risk prediction. An important consideration in integrating PRSs into clinical settings is to gain an understanding of how to identify which subpopulations of individuals most benefit from PRSs for risk prediction. In this study, using the UK Biobank dataset, we trained logistic regression models to predict the 10 year incident risk of myocardial infarction, breast cancer, and schizophrenia using either just clinical features or clinical features combined with PRSs. For each disease, we identified the top 10% subgroup with the greatest magnitude of improvement in risk prediction accuracy attributed to PRSs in the multi-modal model. Using up to ~ 3.6 k demographic, lifestyle, diagnostic, lab, and physical measurement features from the UK Biobank dataset of ~ 500 k individuals, we characterized these subgroups based on various clinical, lifestyle, and demographic characteristics. The incident cases in the top 10% subgroup for each disease represent distinct phenotypes that differ from other cases and that are strongly correlated with genetic predisposition. Our findings provide insights into disease subtypes and can encourage future studies aimed at classifying these individuals to enhance the targeting of polygenic risk scoring in practice.

摘要

多基因风险评分 (PRSs) 在将其转化为临床环境以改善疾病风险预测方面具有潜力。将 PRSs 整合到临床环境中需要考虑的一个重要因素是了解如何识别哪些个体亚群最受益于 PRSs 进行风险预测。在这项研究中,我们使用 UK Biobank 数据集,使用逻辑回归模型来预测 10 年内心肌梗死、乳腺癌和精神分裂症的发病风险,使用的是仅临床特征或临床特征与 PRSs 相结合。对于每种疾病,我们确定了多模态模型中归因于 PRSs 的风险预测准确性提高幅度最大的前 10%亚组。我们使用来自 UK Biobank 数据集的多达 3600 个个体的人口统计学、生活方式、诊断、实验室和身体测量特征,根据各种临床、生活方式和人口统计学特征对这些亚组进行了描述。每种疾病的前 10%亚组中的发病病例代表了与其他病例不同的独特表型,并且与遗传易感性密切相关。我们的研究结果提供了对疾病亚型的深入了解,并可以鼓励未来的研究,旨在对这些个体进行分类,以提高实践中多基因风险评分的靶向性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9705/11436906/536fd045bc63/41598_2024_63705_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验