Suppr超能文献

多基因风险评分预测非洲裔女性乳腺癌风险:跨种族方法。

Polygenic risk scores for prediction of breast cancer risk in women of African ancestry: a cross-ancestry approach.

机构信息

Department of Public Health Sciences, The University of Chicago, Chicago, IL 60637, USA.

Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20850, USA.

出版信息

Hum Mol Genet. 2022 Sep 10;31(18):3133-3143. doi: 10.1093/hmg/ddac102.

Abstract

Polygenic risk scores (PRSs) are useful for predicting breast cancer risk, but the prediction accuracy of existing PRSs in women of African ancestry (AA) remains relatively low. We aim to develop optimal PRSs for the prediction of overall and estrogen receptor (ER) subtype-specific breast cancer risk in AA women. The AA dataset comprised 9235 cases and 10 184 controls from four genome-wide association study (GWAS) consortia and a GWAS study in Ghana. We randomly divided samples into training and validation sets. We built PRSs using individual-level AA data by a forward stepwise logistic regression and then developed joint PRSs that combined (1) the PRSs built in the AA training dataset and (2) a 313-variant PRS previously developed in women of European ancestry. PRSs were evaluated in the AA validation set. For overall breast cancer, the odds ratio per standard deviation of the joint PRS in the validation set was 1.34 [95% confidence interval (CI): 1.27-1.42] with the area under receiver operating characteristic curve (AUC) of 0.581. Compared with women with average risk (40th-60th PRS percentile), women in the top decile of the PRS had a 1.98-fold increased risk (95% CI: 1.63-2.39). For PRSs of ER-positive and ER-negative breast cancer, the AUCs were 0.608 and 0.576, respectively. Compared with existing methods, the proposed joint PRSs can improve prediction of breast cancer risk in AA women.

摘要

多基因风险评分(PRSs)可用于预测乳腺癌风险,但现有 PRSs 在非裔美国女性中的预测准确性仍然相对较低。我们旨在为非裔美国女性预测整体和雌激素受体(ER)亚型特异性乳腺癌风险开发最佳 PRSs。AA 数据集包含来自四个全基因组关联研究(GWAS)联盟和加纳 GWAS 研究的 9235 例病例和 10184 例对照。我们随机将样本分为训练集和验证集。我们通过向前逐步逻辑回归使用个体水平的 AA 数据构建 PRSs,然后开发联合 PRSs,将(1)在 AA 训练数据集中构建的 PRSs 和(2)先前在欧洲裔女性中开发的 313 变体 PRS 结合起来。在 AA 验证集中评估了 PRSs。对于整体乳腺癌,验证集中联合 PRS 的每标准偏差的优势比为 1.34 [95%置信区间(CI):1.27-1.42],接受者操作特征曲线(AUC)为 0.581。与平均风险(PRS 百分位数第 40-60 位)的女性相比,PRS 排名前十的女性风险增加了 1.98 倍(95%CI:1.63-2.39)。对于 ER 阳性和 ER 阴性乳腺癌的 PRSs,AUC 分别为 0.608 和 0.576。与现有方法相比,所提出的联合 PRSs 可以提高非裔美国女性乳腺癌风险的预测能力。

相似文献

引用本文的文献

本文引用的文献

7
Breast cancer statistics, 2019.乳腺癌统计数据,2019 年。
CA Cancer J Clin. 2019 Nov;69(6):438-451. doi: 10.3322/caac.21583. Epub 2019 Oct 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验