Suppr超能文献

深度学习领域自适应从荧光光谱小数据集理解物理化学过程及其在橄榄油氧化中的应用。

Deep learning domain adaptation to understand physico-chemical processes from fluorescence spectroscopy small datasets and application to the oxidation of olive oil.

机构信息

Research and Development, TOELT LLC, 8600, Dübendorf, Switzerland.

Computer Science Department, Lucerne University of Applied Sciences and Arts, 6343, Rotkreuz, Switzerland.

出版信息

Sci Rep. 2024 Sep 27;14(1):22291. doi: 10.1038/s41598-024-73054-y.

Abstract

Fluorescence spectroscopy is a fundamental tool in life sciences and chemistry, with applications in environmental monitoring, food quality control, and biomedical diagnostics. However, analysis of spectroscopic data with deep learning, in particular of fluorescence excitation-emission matrices (EEMs), presents significant challenges due to the typically small and sparse datasets available. Furthermore, the analysis of EEMs is difficult due to their high dimensionality and overlapping spectral features. This study proposes a new approach that exploits domain adaptation with pretrained vision models, along with a novel interpretability algorithm to address these challenges. Thanks to specialised feature engineering of the neural networks described in this work, we are now able to provide deeper insights into the physico-chemical processes underlying the data. The proposed approach is demonstrated through the analysis of the oxidation process in extra virgin olive oil (EVOO), showing its effectiveness in predicting quality indicators and identifying the spectral bands and thus the molecules involved in the process. This work describes a significantly innovative approach to deep learning for spectroscopy, transforming it from a black box into a tool for understanding complex biological and chemical processes.

摘要

荧光光谱学是生命科学和化学中的一个基本工具,在环境监测、食品质量控制和生物医学诊断等领域有广泛应用。然而,由于可用的光谱数据集通常较小且稀疏,深度学习在分析光谱数据方面,特别是荧光激发-发射矩阵 (EEM) 方面,存在重大挑战。此外,由于 EEM 的高维度和重叠的光谱特征,其分析也具有一定难度。本研究提出了一种新的方法,该方法利用带有预训练视觉模型的领域自适应以及一种新颖的可解释性算法来解决这些挑战。得益于这项工作中所描述的神经网络的专门特征工程,我们现在能够更深入地了解数据背后的物理化学过程。通过对特级初榨橄榄油 (EVOO) 氧化过程的分析,证明了该方法的有效性,能够预测质量指标并识别参与该过程的光谱波段和分子。这项工作描述了一种用于光谱学的极具创新性的深度学习方法,将其从一个黑盒子转变为理解复杂生物和化学过程的工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/838a/11436814/5dbb81af6e6b/41598_2024_73054_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验