Suppr超能文献

采用激发-发射矩阵荧光光谱法和多元分析鉴定大肠埃希菌和肺炎克雷伯菌的耐药性。

Identification of resistance in Escherichia coli and Klebsiella pneumoniae using excitation-emission matrix fluorescence spectroscopy and multivariate analysis.

机构信息

Institute of Chemistry, Biological Chemistry and Chemometrics, Federal University of Rio Grande do Norte, Natal, RN, 59072-970, Brazil.

Laboratory of Mycobateria, Department of Microbiology and Parasitology, Federal University of Rio Grande do Norte, Natal, RN, 59072-970, Brazil.

出版信息

Sci Rep. 2020 Aug 3;10(1):12994. doi: 10.1038/s41598-020-70033-x.

Abstract

Klebsiella pneumoniae and Escherichia coli are part of the Enterobacteriaceae family, being common sources of community and hospital infections and having high antimicrobial resistance. This resistance profile has become the main problem of public health infections. Determining whether a bacterium has resistance is critical to the correct treatment of the patient. Currently the method for determination of bacterial resistance used in laboratory routine is the antibiogram, whose time to obtain the results can vary from 1 to 3 days. An alternative method to perform this determination faster is excitation-emission matrix (EEM) fluorescence spectroscopy combined with multivariate classification methods. In this paper, Linear Discriminant Analysis (LDA), Quadratic Discriminant Analysis (QDA) and Support Vector Machines (SVM), coupled with dimensionality reduction and variable selection algorithms: Principal Component Analysis (PCA), Genetic Algorithm (GA), and the Successive Projections Algorithm (SPA) were used. The most satisfactory models achieved sensitivity and specificity rates of 100% for all classes, both for E. coli and for K. pneumoniae. This finding demonstrates that the proposed methodology has promising potential in routine analyzes, streamlining the results and increasing the chances of treatment efficiency.

摘要

肺炎克雷伯菌和大肠埃希菌属于肠杆菌科,是社区和医院感染的常见来源,具有很高的抗药性。这种耐药性已成为公共卫生感染的主要问题。确定细菌是否具有耐药性对于正确治疗患者至关重要。目前,实验室常规用于确定细菌耐药性的方法是药敏试验,其获得结果的时间可能需要 1 至 3 天。一种更快进行此测定的替代方法是激发-发射矩阵(EEM)荧光光谱法结合多元分类方法。在本文中,使用了线性判别分析(LDA)、二次判别分析(QDA)和支持向量机(SVM),并结合了降维和变量选择算法:主成分分析(PCA)、遗传算法(GA)和连续投影算法(SPA)。对于所有类别,对于大肠埃希菌和肺炎克雷伯菌,最令人满意的模型均实现了 100%的灵敏度和特异性。这一发现表明,所提出的方法在常规分析中具有很大的应用潜力,能够简化结果并提高治疗效率的机会。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b01c/7400627/f7b05600ec6f/41598_2020_70033_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验