Suppr超能文献

基于多维数据探索和验证结直肠腺癌中的坏死性基因调控及相关长链非编码 RNA 机制。

Exploring and validating the necroptotic gene regulation and related lncRNA mechanisms in colon adenocarcinoma based on multi-dimensional data.

机构信息

Department of Oncology, The Affiliated Hospital of Hunan Academy of Traditional Chinese Medicine, Changsha, China.

Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China.

出版信息

Sci Rep. 2024 Sep 27;14(1):22251. doi: 10.1038/s41598-024-73168-3.

Abstract

Necroptosis is intimately associated with the initiation and progression of colon adenocarcinoma (COAD). However, studies on necroptosis-related genes (NRGs) and the regulating long non-coding RNAs (NRGlncRNAs) in the context of COAD are limited. We retrieved the cancer genome atlas (TCGA) to collect datasets of NRGs and NRGlncRNAs on COAD patients. The risk model constructed using Cox and least absolute shrinkage and selection operator (LASSO) regression was then employed to identify NRGs and NRGlncRNAs with prognostic significance. Subsequently, we validated the results using gene expression omnibus (GEO) datasets from different populations, conducted Mendelian randomization (MR) analysis to explore the potential causal relationships between prognostic NRGs and COAD, and conducted cell experiments to verify the expression of prognostic NRGlncRNAs in COAD. Furthermore, we explored potential pathways and regulatory mechanisms of these prognostic NRGlncRNAs and NRGs in COAD through enrichment analysis, immune cell correlation analysis, tumor microenvironment analysis, immune checkpoint analysis, tumor sample clustering, and so on. We identified eight NRGlncRNAs (AC245100.5, AP001619.1, LINC01614, AC010463.3, AL162595.1, ITGB1-DT, LINC01857, and LINC00513) used for constructing the prognostic model and nine prognostic NRGs (AXL, BACH2, CFLAR, CYLD, IPMK, MAP3K7, ATRX, BRAF, and OTULIN) with regulatory relationships with them, and their validation was performed using GEO and GWAS datasets, as well as cell experiments, which showed largely consistent results. These prognostic NRGlncRNAs and NRGs modulate various biological functions, including immune inflammatory response, oxidative stress, immune escape, telomere regulation, and cytokine response, influencing the development of COAD. Additionally, stratified analysis of the high-risk and low-risk groups based on the prognostic model revealed elevated expression of immune cells, increased expression of tumor microenvironment cells, and upregulation of immune checkpoint gene expression in the high-risk group. Finally, through cluster analysis, we identified tumor subtypes, and the results of cluster analysis were essentially consistent with the analysis between risk groups. The prognostic NGRlncRNAs and NRGs identified in our study serve as prognostic indicators and potential therapeutic targets for COAD, providing a theoretical basis for the clinical diagnosis and treatment of COAD and offering guidance for further research.

摘要

细胞程序性坏死与结肠腺癌(COAD)的发生和发展密切相关。然而,有关 COAD 中细胞程序性坏死相关基因(NRGs)和调控长链非编码 RNA(NRGlncRNAs)的研究仍然有限。我们从癌症基因组图谱(TCGA)中收集 COAD 患者的 NRGs 和 NRGlncRNAs 数据集。然后,我们使用 Cox 和最小绝对值收缩和选择算子(LASSO)回归构建风险模型,以识别具有预后意义的 NRGs 和 NRGlncRNAs。接下来,我们使用来自不同人群的基因表达综合数据库(GEO)数据集验证结果,进行孟德尔随机化(MR)分析以探索预后 NRGs 与 COAD 之间的潜在因果关系,并进行细胞实验以验证 COAD 中预后 NRGlncRNAs 的表达。此外,我们通过富集分析、免疫细胞相关性分析、肿瘤微环境分析、免疫检查点分析、肿瘤样本聚类等方法,探索这些预后 NRGlncRNAs 和 NRGs 在 COAD 中的潜在通路和调控机制。我们确定了 8 个 NRGlncRNAs(AC245100.5、AP001619.1、LINC01614、AC010463.3、AL162595.1、ITGB1-DT、LINC01857 和 LINC00513)用于构建预后模型,以及 9 个具有调控关系的预后 NRGs(AXL、BACH2、CFLAR、CYLD、IPMK、MAP3K7、ATRX、BRAF 和 OTULIN),并使用 GEO 和 GWAS 数据集以及细胞实验进行验证,结果基本一致。这些预后 NRGlncRNAs 和 NRGs 调节多种生物学功能,包括免疫炎症反应、氧化应激、免疫逃逸、端粒调节和细胞因子反应,影响 COAD 的发展。此外,基于预后模型对高低风险组进行分层分析,发现高风险组中免疫细胞表达升高、肿瘤微环境细胞表达升高和免疫检查点基因表达上调。最后,通过聚类分析,我们鉴定了肿瘤亚型,聚类分析的结果与风险组之间的分析基本一致。我们研究中确定的预后 NGRlncRNAs 和 NRGs 可作为 COAD 的预后指标和潜在治疗靶点,为 COAD 的临床诊断和治疗提供理论依据,并为进一步的研究提供指导。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa2e/11437100/03778c90e9c6/41598_2024_73168_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验