Suppr超能文献

利用蒙特卡洛和遗传算法的航空相机热网络模型参数优化

Parameter optimization of thermal network model for aerial cameras utilizing Monte-Carlo and genetic algorithm.

作者信息

Fan Yue, Feng Wei, Ren Zhenxing, Liu Bingqi, Huang Long, Wang Dazhi

机构信息

College of Mechanical Engineering, Chengdu University, Chengdu, 610106, Sichuan, China.

Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu, 610209, Sichuan, China.

出版信息

Sci Rep. 2024 Sep 27;14(1):22255. doi: 10.1038/s41598-024-73379-8.

Abstract

It is crucial to precisely calculate temperature utilizing thermal models, which require the determination of thermal parameters that optimally align model outcomes with experimental data. In many instances, the refinement of these models is undertaken within space instruments. This paper introduces an optimization methodology for thermal network models, with the objective of enhancing the accuracy of temperature predictions for aerial cameras. The investigation of internal convective heat transfer coefficients for both cylindrical and planar structures provides an estimation of convective thermal parameters. Based on the identification of thermally sensitive parameters and the reliability evaluation of transient temperature data through the Monte-Carlo simulation, the genetic algorithm is employed to search for global optimal parameter values that minimize the root mean square error (RMSE) between calculated and measured node temperatures. As a result, the optimized model shows significantly improved accuracy in temperature prediction, attaining an RMSE of 1.07 ℃ and reducing the maximum relative error between predicted and experimental results from 33.8 to 3.1%. Furthermore, the flight simulation and thermal control experiments validate the robustness of the optimized model, demonstrating that discrepancies between the observed and predicted temperatures are within 2 °C after re-correcting the external convection heat transfer coefficient value.

摘要

利用热模型精确计算温度至关重要,这需要确定热参数,以使模型结果与实验数据达到最佳匹配。在许多情况下,这些模型的优化是在空间仪器中进行的。本文介绍了一种热网络模型的优化方法,旨在提高航空相机温度预测的准确性。对圆柱形和平面结构的内部对流换热系数进行研究,可估算对流热参数。基于热敏感参数的识别以及通过蒙特卡洛模拟对瞬态温度数据的可靠性评估,采用遗传算法搜索全局最优参数值,以最小化计算节点温度与测量节点温度之间的均方根误差(RMSE)。结果,优化后的模型在温度预测方面显示出显著提高的准确性,RMSE达到1.07℃,预测结果与实验结果之间的最大相对误差从33.8%降至3.1%。此外,飞行模拟和热控实验验证了优化模型的鲁棒性,表明在重新校正外部对流换热系数值后,观测温度与预测温度之间的差异在2℃以内。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a57d/11437183/3e59ad522f37/41598_2024_73379_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验