Lv Jiawei, Han Jeong Hyun, Han Geonho, An Seongmin, Kim Seung Ju, Kim Ryeong Myeong, Ryu Jung-El, Oh Rena, Choi Hyuckjin, Ha In Han, Lee Yoon Ho, Kim Minje, Park Gyeong-Su, Jang Ho Won, Doh Junsang, Choi Junil, Nam Ki Tae
Department of Materials Science and Engineering, Seoul National University, Seoul, Republic of Korea.
School of Electrical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea.
Nat Commun. 2024 Sep 27;15(1):8257. doi: 10.1038/s41467-024-52358-7.
Spatiotemporal control of full freedoms of polarized light emission is crucial in multiplexed optical computing, encryption and communication. Although recent advancements have been made in active emission or passive conversion of polarized light through solution-processed nanomaterials or metasurfaces, these design paths usually encounter limitations, such as small polarization degrees, low light utilization efficiency, limited polarization states, and lack of spatiotemporal control. Here, we addressed these challenges by integrating the spatiotemporal modulation of the LED device, the precise control and efficient polarization emission through nanomaterial assembly, and the programmable patterning/positioning using 3D printing. We achieved an extremely high degree of polarization for both linearly and circularly polarized emission from ultrathin inorganic nanowires and quantum nanorods thanks to the shear-force-induced alignment effect during the protruding of printing filaments. Real-time polarization modulation covering the entire Poincaré sphere can be conveniently obtained through the programming of the on-off state of each LED pixel. Further, the output polarization states can be encoded by an ordered chiral plasmonic film. Our device provides an excellent platform for multiplexing spatiotemporal polarization information, enabling visible light communication with an exceptionally elevated level of physical layer security and multifunctional encrypted displays that can encode both 2D and 3D information.
在多路复用光学计算、加密和通信中,对偏振光发射的完全自由度进行时空控制至关重要。尽管最近在通过溶液处理的纳米材料或超表面进行偏振光的主动发射或被动转换方面取得了进展,但这些设计路径通常会遇到限制,例如偏振度小、光利用效率低、偏振态有限以及缺乏时空控制。在这里,我们通过整合LED器件的时空调制、通过纳米材料组装实现精确控制和高效偏振发射,以及使用3D打印进行可编程图案化/定位来应对这些挑战。由于打印细丝突出过程中的剪切力诱导排列效应,我们从超薄无机纳米线和量子纳米棒实现了线性和圆偏振发射的极高偏振度。通过对每个LED像素的开关状态进行编程,可以方便地获得覆盖整个庞加莱球的实时偏振调制。此外,输出偏振态可以由有序手性等离子体膜编码。我们的器件为时空偏振信息的复用提供了一个出色的平台,实现了具有极高物理层安全性水平的可见光通信以及可以编码2D和3D信息的多功能加密显示器。