Multidisciplinary Centre for Advanced Research and Studies, Jamia Millia Islamia, New Delhi, India.
Rajendra Institute of Medical Sciences, Ranchi, Jharkhand, India.
Sci Data. 2024 Sep 27;11(1):1050. doi: 10.1038/s41597-024-03836-6.
Oral cancer is a global health challenge with a difficult histopathological diagnosis. The accurate histopathological interpretation of oral cancer tissue samples remains difficult. However, early diagnosis is very challenging due to a lack of experienced pathologists and inter- observer variability in diagnosis. The application of artificial intelligence (deep learning algorithms) for oral cancer histology images is very promising for rapid diagnosis. However, it requires a quality annotated dataset to build AI models. We present ORCHID (ORal Cancer Histology Image Database), a specialized database generated to advance research in AI-based histology image analytics of oral cancer and precancer. The ORCHID database is an extensive multicenter collection of high-resolution images captured at 1000X effective magnification (100X objective lens), encapsulating various oral cancer and precancer categories, such as oral submucous fibrosis (OSMF) and oral squamous cell carcinoma (OSCC). Additionally, it also contains grade-level sub-classifications for OSCC, such as well- differentiated (WD), moderately-differentiated (MD), and poorly-differentiated (PD). The database seeks to aid in developing innovative artificial intelligence-based rapid diagnostics for OSMF and OSCC, along with subtypes.
口腔癌是一项全球性的健康挑战,其病理诊断具有一定难度。口腔癌组织样本的准确病理解读仍然具有一定难度。然而,由于缺乏经验丰富的病理学家和诊断中的观察者间变异性,早期诊断极具挑战性。人工智能(深度学习算法)在口腔癌组织学图像中的应用对于快速诊断非常有前景。但是,它需要一个质量标注数据集来构建 AI 模型。我们展示了 ORCHID(口腔癌组织学图像数据库),这是一个专门为推进基于 AI 的口腔癌和癌前病变组织学图像分析研究而生成的数据库。ORCHID 数据库是一个广泛的多中心高分辨率图像集合,以 1000X 有效放大倍率(100X 物镜)捕获,包含各种口腔癌和癌前病变类别,如口腔黏膜下纤维化(OSMF)和口腔鳞状细胞癌(OSCC)。此外,它还包含 OSCC 的分级亚分类,如高分化(WD)、中分化(MD)和低分化(PD)。该数据库旨在帮助开发针对 OSMF 和 OSCC 以及亚型的创新人工智能快速诊断方法。