Singh Manjot, Bianco Davide, Adam Jaber, Capaccio Angela, Clemente Stefania, Del Sorbo Maria Rosaria, Feoli Chiara, Kaur Jasneet, Nappi Carmela, Panico Mariarosaria, Rusciano Giulia, Rossi Manuela, Sasso Antonio, Valadan Mohammadhassan, Cuocolo Alberto, Battista Edmondo, Netti Paolo Antonio, Altucci Carlo
Department of Advanced Biomedical Sciences, University of Naples, Federico II, Naples, Italy.
National Institute of Nuclear Physics, Section of Naples, Naples, Italy.
Sci Rep. 2024 Sep 27;14(1):22130. doi: 10.1038/s41598-024-69410-7.
Two-dimensional transition metal dichalcogenides, particularly MoS, are interesting materials for many applications in aerospace research, radiation therapy and bioscience more in general. Since in many of these applications MoS-based nanomaterials can be placed in an aqueous environment while exposed to ionizing radiation, both experimental and theoretical studies of their behaviour under these conditions is particularly interesting. Here, we study the effects of tiny imparted doses of 511 keV photons to MoS nanoflakes in water solution. To the best of our knowledge, this is the first study in which ionizing radiation on 2D-MoS occurs in water. Interestingly, we find that, in addition to the direct interaction between high-energy photons and nanoflakes, reactive chemical species, generated by γ-photons induced radiolysis of water, come into play a relevant role. A radiation transport Monte Carlo simulation allowed determining the elements driving the morphological and spectroscopical changes of 2D-MoS, experimentally monitored by SEM microscopy, DLS, Raman and UV-vis spectroscopy, AFM, and X-ray photoelectron techniques. Our study demonstrates that radiolysis products affect the Molybdenum oxidation state, which is massively changed from the stable + 4 and + 6 states into the rarer and more unstable + 5. These findings will be relevant for radiation-based therapies and diagnostics in patients that are assuming drugs or contrast agents containing 2D-MoS and for aerospace biomedical applications of 2DMs investigating their actions into living organisms on space station or satellites.
二维过渡金属二硫属化物,特别是二硫化钼(MoS₂),在航空航天研究、放射治疗以及更广泛的生物科学等众多应用中都是令人感兴趣的材料。由于在许多这些应用中,基于MoS₂的纳米材料在暴露于电离辐射时可置于水环境中,因此对其在这些条件下行为的实验和理论研究都特别有趣。在此,我们研究了向水溶液中的MoS₂纳米片施加微小剂量511 keV光子的影响。据我们所知,这是首次在水中对二维MoS₂进行电离辐射的研究。有趣的是,我们发现,除了高能光子与纳米片之间的直接相互作用外,由γ光子诱导的水的辐射分解产生的活性化学物质也发挥了重要作用。通过辐射传输蒙特卡罗模拟确定了驱动二维MoS₂形态和光谱变化的因素,这些变化通过扫描电子显微镜(SEM)、动态光散射(DLS)、拉曼光谱和紫外可见光谱、原子力显微镜(AFM)以及X射线光电子能谱技术进行实验监测。我们的研究表明,辐射分解产物会影响钼的氧化态,使其从稳定的 +4和 +6态大量转变为更罕见且更不稳定的 +5态。这些发现对于正在服用含二维MoS₂药物或造影剂的患者的基于辐射的治疗和诊断,以及对于研究二维材料在空间站或卫星上对生物体作用的二维材料的航空航天生物医学应用都具有重要意义。