Suppr超能文献

伽马辐射诱导二维硫化钼晶体的氧化、掺杂和蚀刻

Gamma Radiation-Induced Oxidation, Doping, and Etching of Two-Dimensional MoS Crystals.

作者信息

Isherwood Liam H, Athwal Gursharanpreet, Spencer Ben F, Casiraghi Cinzia, Baidak Aliaksandr

机构信息

Department of Chemistry, School of Natural Sciences, University of Manchester, Manchester M13 9PL, United Kingdom.

Dalton Cumbrian Facility, Dalton Nuclear Institute, University of Manchester, Cumbria, CA24 3HA, United Kingdom.

出版信息

J Phys Chem C Nanomater Interfaces. 2021 Feb 25;125(7):4211-4222. doi: 10.1021/acs.jpcc.0c10095. Epub 2021 Feb 10.

Abstract

Two-dimensional (2D) MoS is a promising material for future electronic and optoelectronic applications. 2D MoS devices have been shown to perform reliably under irradiation conditions relevant for a low Earth orbit. However, a systematic investigation of the stability of 2D MoS crystals under high-dose gamma irradiation is still missing. In this work, absorbed doses of up to 1000 kGy are administered to 2D MoS. Radiation damage is monitored via optical microscopy and Raman, photoluminescence, and X-ray photoelectron spectroscopy techniques. After irradiation with 500 kGy dose, p-doping of the monolayer MoS is observed and attributed to the adsorption of O onto created vacancies. Extensive oxidation of the MoS crystal is attributed to reactions involving the products of adsorbate radiolysis. Edge-selective radiolytic etching of the uppermost layer in 2D MoS is attributed to the high reactivity of active edge sites. After irradiation with 1000 kGy, the monolayer MoS crystals appear to be completely etched. This holistic study reveals the previously unreported effects of high-dose gamma irradiation on the physical and chemical properties of 2D MoS. Consequently, it demonstrates that radiation shielding, adsorbate concentrations, and required device lifetimes must be carefully considered, if devices incorporating 2D MoS are intended for use in high-dose radiation environments.

摘要

二维(2D)二硫化钼是未来电子和光电子应用中一种很有前景的材料。二维二硫化钼器件已被证明在与低地球轨道相关的辐照条件下能可靠运行。然而,目前仍缺乏对二维二硫化钼晶体在高剂量伽马辐照下稳定性的系统研究。在这项工作中,对二维二硫化钼施加了高达1000千戈瑞的吸收剂量。通过光学显微镜以及拉曼光谱、光致发光光谱和X射线光电子能谱技术监测辐射损伤。在500千戈瑞剂量辐照后,观察到单层二硫化钼出现p型掺杂,这归因于氧吸附到产生的空位上。二硫化钼晶体的广泛氧化归因于涉及吸附质辐射分解产物的反应。二维二硫化钼最上层的边缘选择性辐射蚀刻归因于活性边缘位点的高反应性。在1000千戈瑞辐照后,单层二硫化钼晶体似乎被完全蚀刻。这项全面的研究揭示了高剂量伽马辐照对二维二硫化钼物理和化学性质的此前未报道的影响。因此,它表明,如果打算将包含二维二硫化钼的器件用于高剂量辐射环境,必须仔细考虑辐射屏蔽、吸附质浓度和所需的器件寿命。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c638/8025684/961202124c77/jp0c10095_0002.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验