Suppr超能文献

利用多种机器学习算法预测经蝶窦垂体腺瘤切除术后精氨酸加压素缺乏症。

Predictive modeling of arginine vasopressin deficiency after transsphenoidal pituitary adenoma resection by using multiple machine learning algorithms.

机构信息

Department of Neurosurgery, Fuzhou General Clinical Medical College, Fujian Medical University (900th Hospital), Fuzhou, 350025, China.

Department of Neurosurgery, East Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China, FuZhou, China.

出版信息

Sci Rep. 2024 Sep 27;14(1):22210. doi: 10.1038/s41598-024-72486-w.

Abstract

This study aimed to predict arginine vasopressin deficiency (AVP-D) following transsphenoidal pituitary adenoma surgery using machine learning algorithms. We reviewed 452 cases from December 2013 to December 2023, analyzing clinical and imaging data. Key predictors of AVP-D included sex, tumor height, preoperative and postoperative changes in sellar diaphragm height and pituitary stalk length, preoperative ACTH levels, changes in ACTH levels, and preoperative cortisol levels. Six machine learning algorithms were tested: logistic regression (LR), support vector classification (SVC), random forest (RF), decision tree (DT), k-nearest neighbors (KNN), and extreme gradient boosting (XGBoost). After cross-validation and parameter optimization, the random forest model demonstrated the highest performance, with an accuracy (ACC) of 0.882 and an AUC of 0.96. The decision tree model followed, achieving an accuracy of 0.843 and an AUC of 0.95. Other models showed lower performance: LR had an ACC of 0.522 and an AUC of 0.54; SVC had an ACC of 0.647 and an AUC of 0.67; KNN achieved an ACC of 0.64 and an AUC of 0.70; and XGBoost had an ACC of 0.794 and an AUC of 0.91. The study found that a shorter preoperative pituitary stalk length, significant intraoperative stretching, and lower preoperative ACTH and cortisol levels were associated with a higher likelihood of developing AVP-D post-surgery.

摘要

本研究旨在使用机器学习算法预测经蝶窦垂体腺瘤手术后精氨酸加压素缺乏(AVP-D)。我们回顾了 2013 年 12 月至 2023 年 12 月的 452 例病例,分析了临床和影像学数据。AVP-D 的主要预测因素包括性别、肿瘤高度、术前和术后鞍膈高度和垂体柄长度的变化、术前 ACTH 水平、ACTH 水平的变化以及术前皮质醇水平。我们测试了六种机器学习算法:逻辑回归(LR)、支持向量分类(SVC)、随机森林(RF)、决策树(DT)、k-最近邻(KNN)和极端梯度提升(XGBoost)。经过交叉验证和参数优化,随机森林模型表现出最高的性能,准确率(ACC)为 0.882,AUC 为 0.96。决策树模型紧随其后,准确率为 0.843,AUC 为 0.95。其他模型的性能较低:LR 的 ACC 为 0.522,AUC 为 0.54;SVC 的 ACC 为 0.647,AUC 为 0.67;KNN 的 ACC 为 0.64,AUC 为 0.70;XGBoost 的 ACC 为 0.794,AUC 为 0.91。该研究发现,术前垂体柄较短、术中明显拉伸以及术前 ACTH 和皮质醇水平较低与术后发生 AVP-D 的可能性较高相关。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/23bc/11436865/ecefc90030d0/41598_2024_72486_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验