Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 404100, China.
Department of Thyroid and Breast Surgery, Guangyuan Central Hospital, Sichuan, 628400, China.
Sci Rep. 2024 Sep 27;14(1):22361. doi: 10.1038/s41598-024-73837-3.
Prophylactic dissection of paratracheal lymph nodes in clinically lymph node-negative (cN0) papillary thyroid carcinoma (PTC) remains controversial. This study aims to integrate preoperative and intraoperative variables to compare traditional nomograms and machine learning (ML) models, developing and validating an interpretable predictive model for paratracheal lymph node metastasis (PLNM) in cN0 PTC patients. We retrospectively selected 3213 PTC patients treated at the First Affiliated Hospital of Chongqing Medical University from 2016 to 2020. They were randomly divided into the training and test datasets with a 7:3 ratio. The 533 PTC patients treated at the Guangyuan Central Hospital from 2019 to 2022 were used as an external test sets. We developed and validated nine ML models using 10-fold cross-validation and grid search for hyperparameter tuning. The predictive performance was evaluated using ROC curves, decision curve analysis (DCA), calibration curves, and precision-recall curves. The best model was compared to a traditional logistic regression-based nomogram. The XGBoost model achieved AUC values of 0.935, 0.857, and 0.775 in the training, validation, and test sets, respectively, significantly outperforming the traditional nomogram model with AUCs of 0.85, 0.844, and 0.769, respectively. SHapley Additive exPlanations (SHAP)-based visualization identified the top 10 predictive features of the XGBoost model, and a web-based calculator was created based on these features. ML is a reliable tool for predicting PLNM in cN0 PTC patients. The SHAP method provides valuable insights into the XGBoost model, and the resultant web-based calculator is a clinically useful tool to assist in the surgical planning for paratracheal lymph node dissection.
预防性解剖临床淋巴结阴性(cN0)甲状腺乳头状癌(PTC)的气管旁淋巴结仍存在争议。本研究旨在整合术前和术中变量,比较传统的列线图和机器学习(ML)模型,为 cN0 PTC 患者的气管旁淋巴结转移(PLNM)开发和验证一个可解释的预测模型。我们回顾性地选择了 2016 年至 2020 年期间在重庆医科大学第一附属医院治疗的 3213 例 PTC 患者。他们被随机分为训练集和测试集,比例为 7:3。2019 年至 2022 年期间在广元市中心医院治疗的 533 例 PTC 患者被用作外部测试集。我们使用 10 折交叉验证和网格搜索进行超参数调整,为 9 个 ML 模型进行了开发和验证。使用 ROC 曲线、决策曲线分析(DCA)、校准曲线和精度-召回曲线评估预测性能。将最佳模型与基于传统逻辑回归的列线图进行比较。XGBoost 模型在训练集、验证集和测试集中的 AUC 值分别为 0.935、0.857 和 0.775,明显优于 AUC 值分别为 0.85、0.844 和 0.769 的传统列线图模型。基于 SHapley Additive exPlanations(SHAP)的可视化确定了 XGBoost 模型的前 10 个预测特征,并基于这些特征创建了一个基于网络的计算器。ML 是预测 cN0 PTC 患者 PLNM 的可靠工具。SHAP 方法为 XGBoost 模型提供了有价值的见解,由此产生的基于网络的计算器是一个用于辅助气管旁淋巴结清扫术的临床有用工具。