Suppr超能文献

一种基于先进计算的高级持续性威胁(APT)攻击检测新方法。

A novel approach for APT attack detection based on an advanced computing.

作者信息

Xuan Cho Do, Nguyen Tung Thanh

机构信息

Faculty of Information Security, Posts and Telecommunications Institute of Technology, Hanoi, Vietnam.

National Institute of Digital Technology and Digital Transformation, Ministry of Information and Communications, Hanoi, Vietnam.

出版信息

Sci Rep. 2024 Sep 27;14(1):22223. doi: 10.1038/s41598-024-72957-0.

Abstract

To enhance the effectiveness of the Advanced Persistent Threat (APT) detection process, this research proposes a new approach to build and analyze the behavior profiles of APT attacks in network traffic. To achieve this goal, this study carries out two main objectives, including (i) building the behavior profile of APT IP in network traffic using a new intelligent computation method; (ii) analyzing and evaluating the behavior profile of APT IP based on a deep graph network. Specifically, to build the behavior profile of APT IP, this article describes using a combination of two different data mining methods: Bidirectional Long Short-Term Memory (Bi) and Attention (A). Based on the obtained behavior profile, the Dynamic Graph Convolutional Neural Network (DGCNN) is proposed to extract the characteristics of APT IP and classify them. With the flexible combination of different components in the model, the important information and behavior of APT attacks are demonstrated, not only enhancing the accuracy of detecting attack campaigns but also reducing false predictions. The experimental results in the paper show that the method proposed in this study has brought better results than other approaches on all measurements. In particular, the accuracy of APT attack prediction results (Precision) reached from 84 to 91%, higher than other studies of over 7%. These experimental results have proven that the proposed BiADG model for detecting APT attacks in this study is proper and reasonable. In addition, those experimental results have not only proven the effectiveness and superiority of the proposed method in detecting APT attacks but have also opened up a new approach for other cyber-attack detections such as distributed denial of service, botnets, malware, phishing, etc.

摘要

为提高高级持续性威胁(APT)检测过程的有效性,本研究提出一种新方法来构建和分析网络流量中APT攻击的行为特征。为实现这一目标,本研究开展了两个主要目标,包括:(i)使用一种新的智能计算方法构建网络流量中APT IP的行为特征;(ii)基于深度图网络分析和评估APT IP的行为特征。具体而言,为构建APT IP的行为特征,本文描述了使用两种不同数据挖掘方法的组合:双向长短期记忆(Bi)和注意力(A)。基于获得的行为特征,提出动态图卷积神经网络(DGCNN)来提取APT IP的特征并进行分类。通过模型中不同组件的灵活组合,展示了APT攻击的重要信息和行为,不仅提高了检测攻击活动的准确性,还减少了误报。论文中的实验结果表明,本研究提出的方法在所有测量指标上都比其他方法取得了更好的结果。特别是,APT攻击预测结果的准确率(Precision)达到了84%至91%,比其他研究高出7%以上。这些实验结果证明了本研究中提出的用于检测APT攻击的BiADG模型是恰当且合理的。此外,这些实验结果不仅证明了所提方法在检测APT攻击方面的有效性和优越性,还为其他网络攻击检测(如分布式拒绝服务、僵尸网络、恶意软件、网络钓鱼等)开辟了一种新方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5997/11436831/0df56997309f/41598_2024_72957_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验