Suppr超能文献

DGCNN:一种用于大规模有标签图的卷积神经网络。

DGCNN: A convolutional neural network over large-scale labeled graphs.

机构信息

Japan Advanced Institute of Science and Technology (JAIST), Nomi city, 923-1211, Japan; Research Group in Computational Intelligence, Le Quy Don Technical University, 236 Hoang Quoc Viet St., Ha Noi, Viet Nam.

Japan Advanced Institute of Science and Technology (JAIST), Nomi city, 923-1211, Japan.

出版信息

Neural Netw. 2018 Dec;108:533-543. doi: 10.1016/j.neunet.2018.09.001. Epub 2018 Sep 21.

Abstract

Exploiting graph-structured data has many real applications in domains including natural language semantics, programming language processing, and malware analysis. A variety of methods has been developed to deal with such data. However, learning graphs of large-scale, varying shapes and sizes is a big challenge for any method. In this paper, we propose a multi-view multi-layer convolutional neural network on labeled directed graphs (DGCNN), in which convolutional filters are designed flexibly to adapt to dynamic structures of local regions inside graphs. The advantages of DGCNN are that we do not need to align vertices between graphs, and that DGCNN can process large-scale dynamic graphs with hundred thousands of nodes. To verify the effectiveness of DGCNN, we conducted experiments on two tasks: malware analysis and software defect prediction. The results show that DGCNN outperforms the baselines, including several deep neural networks.

摘要

利用图结构数据在包括自然语言语义、编程语言处理和恶意软件分析在内的多个领域具有许多实际应用。已经开发了多种方法来处理此类数据。然而,学习大规模、变化形状和大小的图对于任何方法都是一个巨大的挑战。在本文中,我们提出了一种基于有标签有向图(DGCNN)的多视图多层卷积神经网络,其中卷积滤波器被灵活设计以适应图内部局部区域的动态结构。DGCNN 的优点是我们不需要在图之间对齐顶点,并且 DGCNN 可以处理具有数十万节点的大规模动态图。为了验证 DGCNN 的有效性,我们在两个任务上进行了实验:恶意软件分析和软件缺陷预测。结果表明,DGCNN 优于基线,包括几种深度神经网络。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验