Suppr超能文献

Mugen-UMAP:单细胞 DNA 测序数据中突变基因的 UMAP 可视化和聚类。

Mugen-UMAP: UMAP visualization and clustering of mutated genes in single-cell DNA sequencing data.

机构信息

School of Biological Sciences, University of Auckland, Auckland, New Zealand.

Research School of Biology, Australian National University, Canberra, ACT, Australia.

出版信息

BMC Bioinformatics. 2024 Sep 27;25(1):308. doi: 10.1186/s12859-024-05928-x.

Abstract

BACKGROUND

The application of Uniform Manifold Approximation and Projection (UMAP) for dimensionality reduction and visualization has revolutionized the analysis of single-cell RNA expression and population genetics. However, its potential in single-cell DNA sequencing data analysis, particularly for visualizing gene mutation information, has not been fully explored.

RESULTS

We introduce Mugen-UMAP, a novel Python-based program that extends UMAP's utility to single-cell DNA sequencing data. This innovative tool provides a comprehensive pipeline for processing gene annotation files of single-cell somatic single-nucleotide variants and metadata to the visualization of UMAP projections for identifying clusters, along with various statistical analyses. Employing Mugen-UMAP, we analyzed whole-exome sequencing data from 365 single-cell samples across 12 non-small cell lung cancer (NSCLC) patients, revealing distinct clusters associated with histological subtypes of NSCLC. Moreover, to demonstrate the general utility of Mugen-UMAP, we applied the program to 9 additional single-cell WES datasets from various cancer types, uncovering interesting patterns of cell clusters that warrant further investigation. In summary, Mugen-UMAP provides a quick and effective visualization method to uncover cell cluster patterns based on the gene mutation information from single-cell DNA sequencing data.

CONCLUSIONS

The application of Mugen-UMAP demonstrates its capacity to provide valuable insights into the visualization and interpretation of single-cell DNA sequencing data. Mugen-UMAP can be found at https://github.com/tengchn/Mugen-UMAP.

摘要

背景

均匀流形逼近和投影 (UMAP) 在单细胞 RNA 表达和群体遗传学分析中的应用已经彻底改变了分析方法。然而,UMAP 在单细胞 DNA 测序数据分析中的应用潜力,特别是在可视化基因突变信息方面,尚未得到充分探索。

结果

我们引入了 Mugen-UMAP,这是一种基于 Python 的新程序,扩展了 UMAP 在单细胞 DNA 测序数据中的应用。这个创新的工具提供了一个全面的流程,用于处理单细胞体细胞单核苷酸变异和元数据的基因注释文件,以可视化 UMAP 投影,用于识别集群,以及各种统计分析。我们使用 Mugen-UMAP 分析了来自 12 名非小细胞肺癌 (NSCLC) 患者的 365 个单细胞样本的全外显子测序数据,揭示了与 NSCLC 组织学亚型相关的不同集群。此外,为了展示 Mugen-UMAP 的通用性,我们将该程序应用于来自不同癌症类型的 9 个额外的单细胞 WES 数据集,揭示了有趣的细胞簇模式,值得进一步研究。总之,Mugen-UMAP 提供了一种快速有效的可视化方法,基于单细胞 DNA 测序数据中的基因突变信息来揭示细胞簇模式。

结论

Mugen-UMAP 的应用证明了它能够为单细胞 DNA 测序数据分析的可视化和解释提供有价值的见解。Mugen-UMAP 可在 https://github.com/tengchn/Mugen-UMAP 上找到。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0e30/11437917/0d959e7652b4/12859_2024_5928_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验