Suppr超能文献

中国社会隔离老年人风险预测模型的建立与验证。

Development and validation of a risk prediction model for older adults with social isolation in China.

机构信息

School of Nursing, Jinan University, Guangzhou, Guangdong, China.

Department of Neurosurgery, the First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China.

出版信息

BMC Public Health. 2024 Sep 27;24(1):2600. doi: 10.1186/s12889-024-20142-3.

Abstract

BACKGROUND

Older adults are vulnerable to social isolation due to declining physical and cognitive function, decreased interpersonal interactions, and reduced outdoor activities after retirement. This study aimed to develop and validate a predictive model to assess the risk of social isolation among older adults in China.

METHODS

Using data from the 2011 China Health and Retirement Longitudinal Study (CHARLS). The study cohort was randomly divided into training and validation groups in a 70:30 ratio. We used least absolute shrinkage and selection operator (LASSO) regression analysis with tenfold cross-validation to identify optimal predictive factors and examined the correlates of social isolation using logistic regression. A nomogram was constructed for the predictive model, and its accuracy was assessed using calibration curves. The predictive performance of the model was assessed using area under the receiver operating characteristic (ROC) curve and decision curve analysis (DCA).

RESULTS

From the 2011 CHARLS database, 4,747 older adults were included in the final analysis, of whom 1,654 (34.8%) experienced social isolation. Multifactorial logistic regression identified educational level, marital status, gender, physical activity, physical self -maintenance ability, and number of children as predictive factors for social isolation. The predictive model achieved an AUC of 0.739 (95%CI = 0.722-0.756) in the training set and 0.708 (95%CI = 0.681-0.735) in the validation set. The Hosmer-Lemeshow test yielded P values of 0.111 and 0.324, respectively (both P > 0.05), indicating significant agreement between the nomogram and observed outcomes. The nomogram showed excellent predictive ability according to ROC and DCA.

CONCLUSIONS

The predictive model developed to assess the risk of social isolation in the Chinese older adults shows promising utility for early screening and intervention by clinical healthcare professionals.

摘要

背景

老年人由于身体和认知功能下降、人际互动减少以及退休后户外活动减少,容易受到社交隔离的影响。本研究旨在开发和验证一种预测模型,以评估中国老年人社交隔离的风险。

方法

使用 2011 年中国健康与退休纵向研究(CHARLS)的数据。研究队列按 70:30 的比例随机分为训练组和验证组。我们使用十倍交叉验证的最小绝对收缩和选择算子(LASSO)回归分析来确定最佳预测因素,并使用逻辑回归检查社交隔离的相关性。构建了一个预测模型的列线图,并通过校准曲线评估其准确性。使用接收者操作特征(ROC)曲线下面积和决策曲线分析(DCA)评估模型的预测性能。

结果

从 2011 年 CHARLS 数据库中,共纳入 4747 名老年人进行最终分析,其中 1654 人(34.8%)经历了社交隔离。多因素逻辑回归确定了教育水平、婚姻状况、性别、身体活动、身体自我维护能力和子女数量是社交隔离的预测因素。该预测模型在训练集中的 AUC 为 0.739(95%CI=0.722-0.756),在验证集中为 0.708(95%CI=0.681-0.735)。Hosmer-Lemeshow 检验的 P 值分别为 0.111 和 0.324(均 P>0.05),表明列线图与观察结果之间具有显著的一致性。根据 ROC 和 DCA,该列线图显示出良好的预测能力。

结论

本研究开发的预测模型用于评估中国老年人社交隔离的风险,为临床医护人员的早期筛查和干预提供了有前途的应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/97bd/11428333/2118bd60469f/12889_2024_20142_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验