Suppr超能文献

中国中老年糖尿病患者抑郁筛查模型。

Depression screening model for middle-aged and elderly diabetic patients in China.

机构信息

Department of Emergency, Shengjing hospital of China Medical University, Shenyang, 110000, Liaoning, PR, China.

Department of Pediatric Orthopedics, Shengjing Hospital of China Medical University, Shenyang, 110000, Liaoning, PR, China.

出版信息

Sci Rep. 2024 Nov 25;14(1):29158. doi: 10.1038/s41598-024-80816-1.

Abstract

Diabetes is a common global disease closely associated with an increased risk of depression. This study analyzed China Health and Retirement Longitudinal Study (CHARLS) data to examine depression in diabetic patients across China. using 29 variables including demographic, behavioral, health conditions, and mental health parameters. The dataset was randomly divided into a 70% training set and a 30% validation set. Predictive factors significantly associated with depression were identified using least absolute shrinkage and selection operator (LASSO) and logistic regression analysis. A nomogram model was constructed using these predictive factors. The model evaluation included the C-index, calibration curves, the Hosmer-Lemeshow test, and DCA. Depression prevalence was 39.1% among diabetic patients. Multifactorial logistic regression identified significant predictors including gender, permanent address, self-perceived health status, presence of lung disease, arthritis, memory disorders, life satisfaction, cognitive function score, ADL score, and social activity. The nomogram model showed high consistency and accuracy, with AUC values of 0.802 for the training set and 0.812 for the validation set. Both sets showed good model fit with Hosmer-Lemeshow P > 0.05. Calibration curves showed significant consistency between the nomogram model and actual observations. ROC and DCA indicated that the nomogram had a good predictive performance. The nomogram developed in this study effectively assesses depression risk in diabetic patients, helping clinicians identify high-risk individuals. This tool could potentially improve patient outcomes.

摘要

糖尿病是一种常见的全球性疾病,与抑郁症的风险增加密切相关。本研究分析了中国健康与退休纵向研究(CHARLS)的数据,以研究中国糖尿病患者的抑郁情况。该研究使用了 29 个变量,包括人口统计学、行为、健康状况和心理健康参数。数据集被随机分为 70%的训练集和 30%的验证集。使用最小绝对值收缩和选择算子(LASSO)和逻辑回归分析确定与抑郁显著相关的预测因素。使用这些预测因素构建了一个列线图模型。模型评估包括 C 指数、校准曲线、Hosmer-Lemeshow 检验和 DCA。糖尿病患者的抑郁患病率为 39.1%。多因素逻辑回归确定了显著的预测因素,包括性别、常住地址、自我感知健康状况、是否患有肺部疾病、关节炎、记忆障碍、生活满意度、认知功能评分、ADL 评分和社会活动。列线图模型显示出较高的一致性和准确性,训练集的 AUC 值为 0.802,验证集的 AUC 值为 0.812。两组均显示出良好的模型拟合度,Hosmer-Lemeshow P 值均大于 0.05。校准曲线显示列线图模型与实际观察结果之间存在显著的一致性。ROC 和 DCA 表明列线图具有良好的预测性能。本研究中开发的列线图有效地评估了糖尿病患者的抑郁风险,有助于临床医生识别高风险个体。该工具可能会改善患者的预后。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b1a3/11589840/e83b8832fc67/41598_2024_80816_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验