Suppr超能文献

《结节性硬化症的治疗方法:从现有疗法到有前途的药物靶点》。

Therapeutic Approaches to Tuberous Sclerosis Complex: From Available Therapies to Promising Drug Targets.

机构信息

Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", 70125 Bari, Italy.

Institute of Biophysics, National Research Council, 16149 Genova, Italy.

出版信息

Biomolecules. 2024 Sep 21;14(9):1190. doi: 10.3390/biom14091190.

Abstract

Tuberous sclerosis complex (TSC) is a rare multisystem disorder caused by heterozygous loss-of-function pathogenic variants in the tumour suppressor genes TSC1 and TSC2 encoding the tuberin and hamartin proteins, respectively. Both TSC1 and TSC2 inhibit the mammalian target of rapamycin (mTOR) complexes pathway, which is crucial for cell proliferation, growth, and differentiation, and is stimulated by various energy sources and hormonal signaling pathways. Pathogenic variants in TSC1 and TSC2 lead to mTORC1 hyperactivation, producing benign tumours in multiple organs, including the brain and kidneys, and drug-resistant epilepsy, a typical sign of TSC. Brain tumours, sudden unexpected death from epilepsy, and respiratory conditions are the three leading causes of morbidity and mortality. Even though several therapeutic options are available for the treatment of TSC, there is further need for a better understanding of the pathophysiological basis of the neurologic and other manifestations seen in TSC, and for novel therapeutic approaches. This review provides an overview of the main current therapies for TSC and discusses recent studies highlighting the repurposing of approved drugs and the emerging role of novel targets for future drug design.

摘要

结节性硬化症(TSC)是一种罕见的多系统疾病,由肿瘤抑制基因 TSC1 和 TSC2 中的杂合功能丧失性致病变异引起,分别编码结节蛋白和错构瘤蛋白。TSC1 和 TSC2 均抑制哺乳动物雷帕霉素靶蛋白(mTOR)复合物途径,该途径对细胞增殖、生长和分化至关重要,并且受到多种能量源和激素信号通路的刺激。TSC1 和 TSC2 的致病变异导致 mTORC1 过度激活,在多个器官中产生良性肿瘤,包括大脑和肾脏,以及耐药性癫痫,这是 TSC 的典型特征。脑肿瘤、癫痫导致的意外猝死和呼吸状况是发病率和死亡率的三个主要原因。尽管有几种治疗选择可用于治疗 TSC,但仍需要更好地了解 TSC 中出现的神经和其他表现的病理生理基础,并需要新的治疗方法。这篇综述概述了 TSC 的主要当前治疗方法,并讨论了最近的研究强调了已批准药物的重新利用以及新型靶点在未来药物设计中的新兴作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bce1/11429992/31dde6bb3f1c/biomolecules-14-01190-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验