Zwolak Justyna P, Taylor Jacob M
National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA.
Joint Quantum Institute, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA.
Rev Mod Phys. 2023;95(1). doi: 10.1103/revmodphys.95.011006.
Arrays of quantum dots (QDs) are a promising candidate system to realize scalable, coupled qubit systems and serve as a fundamental building block for quantum computers. In such semiconductor quantum systems, devices now have tens of individual electrostatic and dynamical voltages that must be carefully set to localize the system into the single-electron regime and to realize good qubit operational performance. The mapping of requisite QD locations and charges to gate voltages presents a challenging classical control problem. With an increasing number of QD qubits, the relevant parameter space grows sufficiently to make heuristic control unfeasible. In recent years, there has been considerable effort to automate device control that combines script-based algorithms with machine learning (ML) techniques. In this Colloquium, a comprehensive overview of the recent progress in the automation of QD device control is presented, with a particular emphasis on silicon- and GaAs-based QDs formed in two-dimensional electron gases. Combining physics-based modeling with modern numerical optimization and ML has proven effective in yielding efficient, scalable control. Further integration of theoretical, computational, and experimental efforts with computer science and ML holds vast potential in advancing semiconductor and other platforms for quantum computing.
量子点阵列是实现可扩展耦合量子比特系统并作为量子计算机基本构建模块的一个很有前景的候选系统。在这类半导体量子系统中,现在的器件有数十个单独的静电电压和动态电压,必须仔细设置这些电压,以便将系统定位到单电子状态并实现良好的量子比特操作性能。将所需的量子点位置和电荷映射到栅极电压是一个具有挑战性的经典控制问题。随着量子点量子比特数量的增加,相关参数空间增长到足以使启发式控制变得不可行。近年来,人们付出了相当大的努力来实现将基于脚本的算法与机器学习(ML)技术相结合的设备控制自动化。在本次研讨会上,对量子点器件控制自动化的最新进展进行了全面概述,特别强调了在二维电子气中形成的基于硅和砷化镓的量子点。将基于物理的建模与现代数值优化和机器学习相结合,已被证明在产生高效、可扩展的控制方面是有效的。理论、计算和实验工作与计算机科学和机器学习的进一步整合,在推进用于量子计算的半导体及其他平台方面具有巨大潜力。