Zhang Junfei, Shang Shenyan, Huo Zehui, Chen Junlin, Wang Yuhang
School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin 300401, China.
Arizona College of Technology, Hebei University of Technology, Tianjin 300401, China.
Materials (Basel). 2024 Sep 18;17(18):4573. doi: 10.3390/ma17184573.
Understanding the strength development of alkali-activated materials (AAMs) with fly ash (FA) and granulated blast furnace slag (GBFS) is crucial for designing high-performance AAMs. This study investigates the strength development mechanism of AAMs using machine learning. A total of 616 uniaxial compressive strength (UCS) data points from FA-GBFS-based AAM mixtures were collected from published literature to train four tree-based machine learning models. Among these models, Gradient Boosting Regression (GBR) demonstrated the highest prediction accuracy, with a correlation coefficient (R-value) of 0.970 and a root mean square error (RMSE) of 4.110 MPa on the test dataset. The SHapley Additive exPlanations (SHAP) analysis revealed that water content is the most influential variable in strength development, followed by curing periods. The study recommends a calcium-to-silicon ratio of around 1.3, a sodium-to-aluminum ratio slightly below 1, and a silicon-to-aluminum ratio slightly above 3 for optimal AAM performance. The proposed design model was validated through laboratory experiments with FA-GBFS-based AAM mixtures, confirming the model's reliability. This research provides novel insights into the strength development mechanism of AAMs and offers a practical guide for elemental design, potentially leading to more sustainable construction materials.
了解含粉煤灰(FA)和粒化高炉矿渣(GBFS)的碱激发材料(AAMs)的强度发展对于设计高性能AAMs至关重要。本研究使用机器学习研究AAMs的强度发展机制。从已发表的文献中收集了基于FA-GBFS的AAM混合物的616个单轴抗压强度(UCS)数据点,以训练四个基于树的机器学习模型。在这些模型中,梯度提升回归(GBR)表现出最高的预测准确性,在测试数据集上的相关系数(R值)为0.970,均方根误差(RMSE)为4.110MPa。SHapley加性解释(SHAP)分析表明,含水量是强度发展中最具影响力的变量,其次是养护期。该研究建议,为了使AAM性能达到最佳,钙硅比约为1.3,钠铝比略低于1,硅铝比略高于3。通过基于FA-GBFS的AAM混合物的实验室实验对所提出的设计模型进行了验证,证实了该模型的可靠性。本研究为AAMs的强度发展机制提供了新的见解,并为元素设计提供了实用指南,可能会带来更可持续的建筑材料。