Rathakrishnan Vimal, Bt Beddu Salmia, Ahmed Ali Najah
Department of Civil Engineering, College of Engineering, Universiti Tenaga Nasional (UNITEN), 43000, Selangor, Malaysia.
Institute of Energy Infrastructure (IEI), Universiti Tenaga Nasional (UNITEN), 43000, Selangor, Malaysia.
Sci Rep. 2022 Jun 9;12(1):9539. doi: 10.1038/s41598-022-12890-2.
Predicting the compressive strength of concrete is a complicated process due to the heterogeneous mixture of concrete and high variable materials. Researchers have predicted the compressive strength of concrete for various mixes using machine learning and deep learning models. In this research, compressive strength of high-performance concrete with high volume ground granulated blast-furnace slag replacement is predicted using boosting machine learning (BML) algorithms, namely, Light Gradient Boosting Machine, CatBoost Regressor, Gradient Boosting Regressor (GBR), Adaboost Regressor, and Extreme Gradient Boosting. In these studies, the BML model's performance is evaluated based on prediction accuracy and prediction error rates, i.e., R, MSE, RMSE, MAE, RMSLE, and MAPE. Additionally, the BML models were further optimised with Random Search algorithms and compared to BML models with default hyperparameters. Comparing all 5 BML models, the GBR model shows the highest prediction accuracy with R of 0.96 and lowest model error with MAE and RMSE of 2.73 and 3.40, respectively for test dataset. In conclusion, the GBR model are the best performing BML for predicting the compressive strength of concrete with the highest prediction accuracy, and lowest modelling error.
由于混凝土的混合不均匀以及材料变化很大,预测混凝土的抗压强度是一个复杂的过程。研究人员已经使用机器学习和深度学习模型预测了各种配合比混凝土的抗压强度。在本研究中,使用提升机器学习(BML)算法,即轻量级梯度提升机、CatBoost回归器、梯度提升回归器(GBR)、Adaboost回归器和极端梯度提升,预测了高掺量磨细粒化高炉矿渣替代的高性能混凝土的抗压强度。在这些研究中,基于预测准确性和预测错误率,即R、均方误差(MSE)、均方根误差(RMSE)、平均绝对误差(MAE)、均方根对数误差(RMSLE)和平均绝对百分比误差(MAPE),对BML模型的性能进行了评估。此外,使用随机搜索算法对BML模型进行了进一步优化,并与具有默认超参数的BML模型进行了比较。比较所有5个BML模型,GBR模型显示出最高的预测准确性,测试数据集的R为0.96,模型误差最低,MAE和RMSE分别为2.73和3.40。总之,GBR模型是预测混凝土抗压强度性能最佳的BML,具有最高的预测准确性和最低的建模误差。