Wang Lingbo, Zhou Hangjie, Lian Songsong, Tang Xudong
College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China.
School of Civil Engineering, NingboTech University, Ningbo 315100, China.
Materials (Basel). 2024 Sep 19;17(18):4600. doi: 10.3390/ma17184600.
In response to rising CO emissions in the cement industry and the growing demand for durable offshore engineering materials, calcium sulphoaluminate (CSA) cement concrete, known for its lower carbon footprint and enhanced corrosion resistance compared to Ordinary Portland Cement (OPC), is increasingly important. However, the chloride transport behavior of CSA concrete in both laboratory and marine environments remains underexplored and controversial. Accordingly, the chloride ion transport behaviors and mechanisms of CSA concrete in laboratory-accelerated drying-wetting cyclic environments using NaCl solution and seawater, as well as in marine tidal environments, were characterized using the rapid chloride test (RCT), X-ray diffraction (XRD), mercury infiltration porosimetry (MIP), and thermogravimetric analysis (TGA). The results reveal that CSA concrete accumulates more chloride ions in NaCl solution than in seawater, with concentrations 2-3.5 times higher at the same water-cement ratio. Microscopic analysis indicates that calcium and sulfate ions present in seawater facilitate the regeneration of ettringite, thereby increasing the density of the surface pore structure. The hydration and repair mechanisms of CSA concrete under laboratory conditions closely resemble those in marine tidal conditions when exposed to seawater. Additionally, this study found that lower chloride ion concentrations and pH levels inhibit the formation of Friedel's salt. Therefore, laboratory experiments with seawater can effectively simulate CSA concrete's chloride transport properties in marine tidal environments, whereas NaCl solution does not accurately reflect actual marine conditions.
鉴于水泥行业二氧化碳排放量不断上升以及对耐用海洋工程材料的需求日益增长,与普通硅酸盐水泥(OPC)相比,具有较低碳足迹和更强耐腐蚀性的硫铝酸钙(CSA)水泥混凝土变得越来越重要。然而,CSA混凝土在实验室和海洋环境中的氯离子传输行为仍未得到充分研究且存在争议。因此,采用快速氯离子试验(RCT)、X射线衍射(XRD)、压汞法(MIP)和热重分析(TGA)对CSA混凝土在使用NaCl溶液和海水的实验室加速干湿循环环境以及海洋潮汐环境中的氯离子传输行为和机制进行了表征。结果表明,在相同水灰比下,CSA混凝土在NaCl溶液中积累的氯离子比在海水中更多,浓度高出2至3.5倍。微观分析表明,海水中存在的钙离子和硫酸根离子促进了钙矾石的再生,从而增加了表面孔隙结构的密度。CSA混凝土在实验室条件下的水化和修复机制与暴露于海水的海洋潮汐条件下的机制非常相似。此外,本研究发现较低的氯离子浓度和pH值会抑制Friedel盐的形成。因此,用海水进行的实验室实验可以有效地模拟CSA混凝土在海洋潮汐环境中的氯离子传输特性,而NaCl溶液不能准确反映实际海洋条件。