Liu Qiaoqiao, Xu Shiwen, He Jia, Cai Wanzhi, Wang Xingmin, Song Fan
Department of Entomology, College of Plant Protection, South China Agricultural University, Guangzhou 510640, China.
MOA Key Lab of Pest Monitoring and Green Management, Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China.
Insects. 2024 Sep 14;15(9):700. doi: 10.3390/insects15090700.
The mitochondrial genome (mitogenome) of Thysanoptera has extensive gene rearrangement, and some species have repeatable control regions. To investigate the characteristics of the gene expression, transcription and post-transcriptional processes in such extensively gene-rearranged mitogenomes, we sequenced the mitogenome and mitochondrial transcriptome of to analyze. The mitogenome was 14,965 bp in length and included two CRs contains 140 bp repeats between (CR1) and (CR2). Unlike the putative ancestral arrangement of insects, exhibited only six conserved gene blocks encompassing 14 genes (, , , , and ). A quantitative transcription map showed the gene with the highest relative expression in the mitogenome was . Based on analyses of polycistronic transcripts, non-coding RNAs (ncRNAs) and antisense transcripts, we proposed a transcriptional model of this mitogenome. Both CRs contained the transcription initiation sites (TISs) and transcription termination sites (TTSs) of both strands, and an additional TIS for the majority strand (J-strand) was found within antisense . The post-transcriptional cleavage processes followed the "tRNA punctuation" model. After the cleavage of transfer RNAs (tRNAs), and matured as bicistronic mRNA due to the translocation of intervening tRNAs, and the 3' untranslated region (UTR) remained in the mRNAs for and . Additionally, isoform RNAs of , and were identified. In summary, the relative mitochondrial gene expression levels, transcriptional model and post-transcriptional cleavage process of are notably different from those insects with typical mitochondrial gene arrangements. In addition, the phylogenetic tree of Thripidae including was reconstructed. Our study provides insights into the phylogenetic status of Sericothripinae and the transcriptional and post-transcriptional regulation processes of extensively gene-rearranged insect mitogenomes.
缨翅目昆虫的线粒体基因组(线粒体基因组)具有广泛的基因重排,并且一些物种具有可重复的控制区域。为了研究在这种广泛基因重排的线粒体基因组中基因表达、转录和转录后过程的特征,我们对[物种名称]的线粒体基因组和线粒体转录组进行了测序分析。该线粒体基因组长度为14,965 bp,包含两个控制区域(CRs),在[CR1]和[CR2]之间含有140 bp的重复序列。与推测的昆虫祖先排列不同,[物种名称]仅表现出六个包含14个基因([基因名称1]、[基因名称2]、[基因名称3]、[基因名称4]、[基因名称5]和[基因名称6])的保守基因块。定量转录图谱显示线粒体基因组中相对表达最高的基因是[基因名称]。基于对多顺反子转录本、非编码RNA(ncRNAs)和反义转录本的分析,我们提出了该线粒体基因组的转录模型。两个控制区域都包含两条链的转录起始位点(TISs)和转录终止位点(TTSs),并且在反义[基因名称]内发现了一条主要链(J链)的额外转录起始位点。转录后切割过程遵循“tRNA标点”模型。在转运RNA(tRNAs)切割后,[基因名称1]和[基因名称2]由于中间tRNAs的易位而成熟为双顺反子mRNA,并且3'非翻译区(UTR)保留在[基因名称1]和[基因名称2]的mRNA中。此外,还鉴定了[基因名称3]、[基因名称4]和[基因名称5]的异构体RNA。总之,[物种名称]的相对线粒体基因表达水平、转录模型和转录后切割过程与具有典型线粒体基因排列的昆虫明显不同。此外,重建了包括[物种名称]在内蓟马科的系统发育树。我们的研究为绢蓟马亚科的系统发育地位以及广泛基因重排的昆虫线粒体基因组的转录和转录后调控过程提供了见解。