Suppr超能文献

透过镜头看花卉探访:用基于计算机视觉的应用探索[具体对象]的觅食行为。 (原文中“with a Computer Vision-Based Application”前缺少具体主体,翻译时保留了这一不完整表述)

Flower Visitation through the Lens: Exploring the Foraging Behaviour of with a Computer Vision-Based Application.

作者信息

Varga-Szilay Zsófia, Szövényi Gergely, Pozsgai Gábor

机构信息

Doctoral School of Biology, Institute of Biology, ELTE Eötvös Loránd University, 1117 Budapest, Hungary.

Department of Systematic Zoology and Ecology, ELTE Eötvös Loránd University, 1117 Budapest, Hungary.

出版信息

Insects. 2024 Sep 22;15(9):729. doi: 10.3390/insects15090729.

Abstract

To understand the processes behind pollinator declines and for the conservation of pollination services, we need to understand fundamental drivers influencing pollinator behaviour. Here, we aimed to elucidate how wild bumblebees interact with three plant species and investigated their foraging behaviour with varying flower densities. We video-recorded in 60 × 60 cm quadrats of , , and in urban areas of Terceira (Azores, Portugal). For the automated bumblebee detection and counting, we created deep learning-based computer vision models with custom datasets. We achieved high model accuracy of 0.88 for and and 0.95 for , indicating accurate bumblebee detection. In our study, flower cover was the only factor that influenced the attractiveness of flower patches, and plant species did not have an effect. We detected a significant positive effect of flower cover on the attractiveness of flower patches for flower-visiting bumblebees. The time spent per unit of inflorescence surface area was longer on the than those on the and . However, our result did not indicate significant differences in the time bumblebees spent on inflorescences among the three plant species. Here, we also justify computer vision-based analysis as a reliable tool for studying pollinator behavioural ecology.

摘要

为了了解传粉者数量下降背后的过程以及保护授粉服务,我们需要了解影响传粉者行为的基本驱动因素。在此,我们旨在阐明野生大黄蜂如何与三种植物物种相互作用,并研究它们在不同花密度下的觅食行为。我们在葡萄牙亚速尔群岛特塞拉岛的市区,在60×60厘米的样方中对[植物名称1]、[植物名称2]和[植物名称3]进行了录像。为了自动检测和计数大黄蜂,我们使用自定义数据集创建了基于深度学习的计算机视觉模型。我们对[植物名称1]和[植物名称2]的模型准确率达到了0.88,对[植物名称3]的模型准确率达到了0.95,表明大黄蜂检测准确。在我们的研究中,花的覆盖率是影响花斑块吸引力的唯一因素,而植物物种没有影响。我们检测到花的覆盖率对访花大黄蜂的花斑块吸引力有显著的正向影响。在[植物名称3]上每单位花序表面积花费的时间比在[植物名称1]和[植物名称2]上的时间长。然而,我们的结果并未表明大黄蜂在这三种植物物种的花序上花费的时间存在显著差异。在此,我们还证明基于计算机视觉的分析是研究传粉者行为生态学的可靠工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ca9/11432343/6e9f5b4d8f8d/insects-15-00729-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验