Moradi Mahmoud, Mehrabi Omid, Rasoul Fakhir A, Mattie Anas Abid, Schaber Friedemann, Khandan Rasoul
Faculty of Arts, Science and Technology, University of Northampton, Northampton NN1 5PH, UK.
Department of Mechanical Engineering, Esfarayen University of Technology, Esfarayen 96619-98195, Iran.
Micromachines (Basel). 2024 Aug 27;15(9):1082. doi: 10.3390/mi15091082.
The rapid advancement of additive manufacturing (AM) technologies has provided new avenues for creating three-dimensional (3D) parts with intricate geometries. Fused Deposition Modeling (FDM) is a prominent technology in this domain, involving the layer-by-layer fabrication of objects by extruding a filament comprising a blend of polymer and metal powder. This study focuses on the FDM process using a filament of Copper-Polylactic Acid (Cu-PLA) composite, which capitalizes on the advantageous properties of copper (high electrical and thermal conductivity, corrosion resistance) combined with the easily processable thermoplastic PLA material. The research delves into the impact of FDM process parameters, specifically, infill percentage (IP), infill pattern (P), and layer thickness (LT) on the maximum failure load (N), percentage of elongation at break, and weight of Cu-PLA composite filament-based parts. The study employs the response surface method (RSM) with Design-Expert V11 software. The selected parameters include infill percentage at five levels (10, 20, 30, 40, and 50%), fill patterns at five levels (Grid, Triangle, Tri-Hexagonal, Cubic-Subdivision, and Lines), and layer thickness at five levels (0.1, 0.2, 0.3, 0.4, and 0.5 mm). Also, the optimal factor values were obtained. The findings highlight that layer thickness and infill percentage significantly influence the weight of the samples, with an observed increase as these parameters are raised. Additionally, an increase in layer thickness and infill percentage corresponds to a higher maximum failure load in the specimens. The peak maximum failure load (230 N) is achieved at a 0.5 mm layer thickness and Tri-Hexagonal pattern. As the infill percentage changes from 10% to 50%, the percentage of elongation at break decreases. The maximum percentage of elongation at break is attained with a 20% infill percentage, 0.2 mm layer thickness, and 0.5 Cubic-Subdivision pattern. Using a multi-objective response optimization, the layer thickness of 0.152 mm, an infill percentage of 32.909%, and a Grid infill pattern was found to be the best configuration.
增材制造(AM)技术的快速发展为制造具有复杂几何形状的三维(3D)零件提供了新途径。熔融沉积建模(FDM)是该领域的一项突出技术,它通过挤出由聚合物和金属粉末混合物组成的细丝,逐层制造物体。本研究聚焦于使用铜-聚乳酸(Cu-PLA)复合材料细丝的FDM工艺,该工艺利用了铜的有利特性(高电导率和热导率、耐腐蚀性)以及易于加工的热塑性PLA材料。该研究深入探讨了FDM工艺参数,特别是填充率(IP)、填充图案(P)和层厚(LT)对基于Cu-PLA复合细丝零件的最大破坏载荷(N)、断裂伸长率百分比和重量的影响。该研究采用了带有Design-Expert V11软件的响应面法(RSM)。所选参数包括五个水平的填充率(10%、20%、30%、40%和50%)、五个水平的填充图案(网格、三角形、三角六边形、立方细分和线条)以及五个水平的层厚(0.1、0.2、0.3、0.4和0.5毫米)。此外,还获得了最佳因子值。研究结果表明,层厚和填充率对样品重量有显著影响,随着这些参数的增加,观察到重量增加。此外,层厚和填充率的增加对应于试样中更高的最大破坏载荷。在层厚为0.5毫米和三角六边形图案下实现了峰值最大破坏载荷(230 N)。随着填充率从10%变为50%,断裂伸长率百分比降低。在填充率为20%、层厚为0.2毫米和立方细分图案为0.5时获得了最大断裂伸长率百分比。使用多目标响应优化,发现层厚为0.152毫米、填充率为32.909%和网格填充图案是最佳配置。