Gill Waqas Amin, Howard Ian, Mazhar Ilyas, McKee Kristoffer
Department of Mechanical Engineering, Curtin University, Perth, WA 6845, Australia.
Micromachines (Basel). 2024 Aug 30;15(9):1107. doi: 10.3390/mi15091107.
This paper presents the development of an analytical model of an internal vibrating ring gyroscope in a Microelectromechanical System (MEMS). The internal ring structure consists of eight semicircular beams that are attached to the externally placed anchors. This research work analyzes the vibrating ring gyroscope's in-plane displacement behavior and the resulting elliptical vibrational modes. The elliptical vibrational modes appear as pairs with the same resonance frequency due to the symmetric structure of the design. The analysis commences by conceptualizing the ring as a geometric structure with a circular shape possessing specific dimensions such as thickness, height, and radius. We construct a linear model that characterizes the vibrational dynamics of the internal vibrating ring. The analysis develops a comprehensive mathematical formulation for the radial and tangential displacements in local polar coordinates by considering the inextensional displacement of the ring structure. By utilizing the derived motion equations, we highlight the underlying relationships driving the vibrational characteristics of the MEMS' vibrating ring gyroscope. These dynamic vibrational relationships are essential in enabling the vibrating ring gyroscope's future utilization in accurate navigation and motion sensing technologies.
本文介绍了一种微机电系统(MEMS)中内部振动环陀螺仪分析模型的开发。内部环结构由八个附着在外部锚点上的半圆形梁组成。这项研究工作分析了振动环陀螺仪的面内位移行为以及由此产生的椭圆振动模式。由于设计的对称结构,椭圆振动模式以具有相同共振频率的对出现。分析首先将环概念化为具有特定尺寸(如厚度、高度和半径)的圆形几何结构。我们构建了一个表征内部振动环振动动力学的线性模型。通过考虑环结构的不可伸长位移,分析得出了局部极坐标中径向和切向位移的综合数学公式。通过利用推导的运动方程,我们突出了驱动MEMS振动环陀螺仪振动特性的潜在关系。这些动态振动关系对于使振动环陀螺仪未来能够用于精确导航和运动传感技术至关重要。