Suppr超能文献

还原氧化石墨烯负载的氧化锡量子点在光照下的电化学性能增强

Enhanced Electrochemical Performance of Tin Oxide Quantum Dots on Reduced Graphene Oxide under Light.

作者信息

Reddy Itheereddi Neelakanta, Akkinepally Bhargav, Shim Jaesool, Bai Cheolho

机构信息

School of Mechanical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea.

出版信息

Micromachines (Basel). 2024 Sep 2;15(9):1125. doi: 10.3390/mi15091125.

Abstract

The study utilized a simple and cost-effective approach to improve the photoelectrochemical (PEC) water-splitting performance of various materials, including reduced graphene oxide (rGO), tin oxide nanostructures (SnO), and rGO/SnO composites. The composites examined were rS15, containing 15 mg of rGO and 45 mg of SnO, and rS5, with 5 mg of rGO and 50 mg of SnO, tested in a sodium hydroxide (NaOH) electrolyte. Notably, the rS5 electrode showed a significant increase in PEC efficiency in 0.1 M NaOH, achieving a peak photocurrent density of 13.24 mA cm under illumination, which was seven times higher than that of pristine rGO nanostructures. This enhancement was attributed to the synergistic effects of the heterostructure, which reduced resistance and minimized charge recombination, thereby maximizing the catalytic activity across the various electrochemical applications. Furthermore, the rS5 anode demonstrated improved Tafel parameters, indicating faster reaction kinetics and lower overpotential for efficient current generation. These results highlight the potential for optimizing nanostructures to significantly enhance PEC performance, paving the way for advancements in sustainable water-splitting technologies.

摘要

该研究采用了一种简单且经济高效的方法来提高包括还原氧化石墨烯(rGO)、氧化锡纳米结构(SnO)以及rGO/SnO复合材料在内的各种材料的光电化学(PEC)水分解性能。所研究的复合材料包括含15毫克rGO和45毫克SnO的rS15以及含5毫克rGO和50毫克SnO的rS5,它们在氢氧化钠(NaOH)电解质中进行测试。值得注意的是,rS5电极在0.1 M NaOH中PEC效率显著提高,在光照下实现了13.24 mA cm的峰值光电流密度,这比原始rGO纳米结构高出七倍。这种增强归因于异质结构的协同效应,该效应降低了电阻并使电荷复合最小化,从而在各种电化学应用中最大化了催化活性。此外,rS5阳极表现出改善的塔菲尔参数,表明反应动力学更快且有效电流产生的过电位更低。这些结果突出了优化纳米结构以显著提高PEC性能的潜力,为可持续水分解技术的进步铺平了道路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2aa5/11434375/ac9b31cbbe2e/micromachines-15-01125-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验