Suppr超能文献

全球自杀死亡率(2000-2019):通过机器学习和文献数据分析聚类、主题和原因

Global Suicide Mortality Rates (2000-2019): Clustering, Themes, and Causes Analyzed through Machine Learning and Bibliographic Data.

机构信息

Faculty of Informatics, Vytautas Magnus University, LT-53361 Akademija Kauno r., Lithuania.

Faculty of Medicine, Vilnius University, LT-08661 Vilnius, Lithuania.

出版信息

Int J Environ Res Public Health. 2024 Sep 10;21(9):1202. doi: 10.3390/ijerph21091202.

Abstract

Suicide research is directed at understanding social, economic, and biological causes of suicide thoughts and behaviors. (1) Background: Worldwide, certain countries have high suicide mortality rates (SMRs) compared to others. Age-standardized suicide mortality rates (SMRs) published by the World Health Organization (WHO) plus numerous bibliographic records of the Web of Science (WoS) database provide resources to understand these disparities between countries and regions. (2) Methods: Hierarchical clustering was applied to age-standardized suicide mortality rates per 100,000 population from 2000-2019. Keywords of country-specific suicide-related publications collected from WoS were analyzed by network and association rule mining. Keyword embedding was carried out using a recurrent neural network. (3) Results: Countries with similar SMR trends formed naturally distinct groups of high, medium, and low suicide mortality rates. Major themes in suicide research worldwide are depression, mental disorders, youth suicide, euthanasia, hopelessness, loneliness, unemployment, and drugs. Prominent themes differentiating countries and regions include: alcohol in post-Soviet countries; HIV/AIDS in Sub-Saharan Africa, war veterans and PTSD in the Middle East, students in East Asia, and many others. (4) Conclusion: Countries naturally group into high, medium, and low SMR categories characterized by different keyword-informed themes. The compiled dataset and presented methodology enable enrichment of analytical results by bibliographic data where observed results are difficult to interpret.

摘要

自杀研究旨在了解自杀想法和行为的社会、经济和生物原因。

  1. 背景:在全球范围内,某些国家的自杀死亡率(SMR)高于其他国家。世界卫生组织(WHO)公布的年龄标准化自杀死亡率(SMR)以及科学引文索引数据库(WoS)的大量文献记录为了解国家和地区之间的这些差异提供了资源。

  2. 方法:对 2000-2019 年每 10 万人的年龄标准化自杀死亡率进行层次聚类分析。对从 WoS 收集的与国家特定自杀相关的出版物的关键字进行网络和关联规则挖掘分析。使用递归神经网络进行关键字嵌入。

  3. 结果:具有相似 SMR 趋势的国家自然形成了高、中、低自杀死亡率的明显群组。全球自杀研究的主要主题是抑郁、精神障碍、青年自杀、安乐死、绝望、孤独、失业和毒品。区分国家和地区的突出主题包括:前苏联国家的酒精;撒哈拉以南非洲的艾滋病毒/艾滋病;中东的退伍军人和创伤后应激障碍;东亚的学生等。

  4. 结论:国家自然分为高、中、低 SMR 类别,其特点是不同的关键字告知主题。编译的数据集和提出的方法使分析结果通过文献数据得到丰富,在观察到的结果难以解释的情况下尤其如此。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3644/11431541/035c44c6deb5/ijerph-21-01202-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验