Ao Bo, Jiang Honglin, Cai Xuan, Liu Decheng, Tu Junming, Shi Xiaoshan, Wang Yanxiang, He Fei, Lv Jing, Li Jingjing, Hu Yuanliang, Xia Xian, Hou Jianjun
Hubei Key Laboratory of Edible Wild Plants Conservation & Utilization, Hubei Engineering Research Center of Characteristic Wild Vegetable Breeding and Comprehensive Utilization Technology, Hubei Normal University, Huangshi 435002, China.
Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
Microorganisms. 2024 Sep 6;12(9):1847. doi: 10.3390/microorganisms12091847.
Today, pathogenic microorganisms are increasingly developing resistance to conventional drugs, necessitating the exploration of alternative strategies. In addressing this challenge, nano-based antibacterial agents offer a promising avenue of research. In the present study, we used an extract of , a widely recognized edible and medicinal plant, to synthesize biogenetic tellurium nanoparticles (Bio-TeNPs). Transmission electron microscopy, scanning electron microscopy, and dynamic light scattering analyses revealed that the obtained Bio-TeNPs had diameters between 20 and 50 nm, and zeta potential values of 23.7 ± 3.3 mV. Fourier-transform infrared spectroscopy and X-ray photoelectron spectroscopy revealed that the Bio-TeNPs consisted primarily of Te(0), along with some organic constituents. Remarkably, these Bio-TeNPs exhibited potent antibacterial activity against a spectrum of pathogens, including , , , , , and . In addition, findings from growth curve experiments, live/dead cell staining, and scanning electron microscopy observations of cell morphology demonstrated that Bio-TeNPs at a concentration of 0.07 mg/mL effectively disrupted . and . cells, leading to cell rupture or shrinkage. The biofilm inhibition rates of 0.7 mg/mL Bio-TeNPs against . and . reached 92% and 90%, respectively. In addition, 7 mg/mL Bio-TeNPs effectively eradicated . from the surfaces of glass slides, with a 100% clearance rate. These outcomes underscore the exceptional antibacterial efficacy of Bio-TeNPs and highlight their potential as promising nanomaterials for combating bacterial infections.
如今,致病微生物对传统药物的耐药性日益增强,因此有必要探索替代策略。为应对这一挑战,基于纳米的抗菌剂提供了一条很有前景的研究途径。在本研究中,我们使用一种广为人知的食用和药用植物的提取物来合成生物源碲纳米颗粒(Bio-TeNPs)。透射电子显微镜、扫描电子显微镜和动态光散射分析表明,所获得的Bio-TeNPs直径在20至50纳米之间,zeta电位值为23.7±3.3毫伏。傅里叶变换红外光谱和X射线光电子能谱表明,Bio-TeNPs主要由Te(0)组成,还含有一些有机成分。值得注意的是,这些Bio-TeNPs对一系列病原体表现出强大的抗菌活性,包括 、 、 、 、 和 。此外,生长曲线实验、活/死细胞染色以及细胞形态的扫描电子显微镜观察结果表明,浓度为0.07毫克/毫升的Bio-TeNPs有效地破坏了 和 细胞,导致细胞破裂或收缩。0.7毫克/毫升的Bio-TeNPs对 和 的生物膜抑制率分别达到92%和90%。此外,7毫克/毫升的Bio-TeNPs有效地从载玻片表面根除了 ,清除率达100%。这些结果强调了Bio-TeNPs卓越的抗菌功效,并突出了它们作为对抗细菌感染的有前景的纳米材料的潜力。