文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

采用叶水醇提取物包封铜纳米粒子的绿色合成及其抗氧化和抗菌活性评价。

Green Synthesis of Encapsulated Copper Nanoparticles Using a Hydroalcoholic Extract of Leaves and Assessment of Their Antioxidant and Antimicrobial Activities.

机构信息

Asthagiri Herbal Research Foundation, 162A, Perungudi Industrial Estate, Perungudi, Chennai 600096, India.

Department of Biology, Chemistry and Environmental Sciences, American University of Sharjah, Sharjah P.O. Box 26666, UAE.

出版信息

Molecules. 2020 Jan 28;25(3):555. doi: 10.3390/molecules25030555.


DOI:10.3390/molecules25030555
PMID:32012912
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7037650/
Abstract

The synthesis of metal nanoparticles using plant extracts is a very promising method in green synthesis. The medicinal value of leaves and the antimicrobial activity of metallic copper were combined in the present study to synthesize copper nanoparticles having a desirable added-value inorganic material. The use of a hydroalcoholic extract of leaves for the green synthesis of copper nanoparticles is an attractive method as it leads to the production of harmless chemicals and reduces waste. The total phenolic content in the leaves extract was 23.0 ± 0.3 mg gallic acid equivalent/g of dried leaves powder. The leaves extract was treated with a copper sulphate solution. A color change from brown to black indicates the formation of copper nanoparticles. Characterization of the synthesized copper nanoparticles was performed using ultraviolet-visible light (UV-Vis) spectrophotometry, Fourier-transform infrared (FTIR) spectrometry, high-resolution transmission electron microscopy (HRTEM), scanning electron microscopy (SEM), and X-ray diffraction (XRD). The synthesized copper nanoparticles have an amorphous nature and particle size of 35.8-49.2 nm. We demonstrate that the M. oleifera leaves extract and the synthesized copper nanoparticles display considerable antioxidant activity. Moreover, the M. oleifera leaves extract and the synthesized copper nanoparticles exert considerable anti-bacterial activity against , , , and (MIC values for the extract: 500, 250, 250, and 250 µg/mL; MIC values for the copper nanoparticles: 500, 500, 500, and 250 µg/mL, respectively). Similarly, the M. oleifera leaves extract and the synthesized copper nanoparticles exert relatively stronger anti-fungal activity against , , , and (MIC values for the extract: 62.5, 62.5, 125, and 250 µg/mL; MIC values for the copper nanoparticles: 125, 125, 62.5, and 31.2 µg/mL, respectively). Our study reveals that the green synthesis of copper nanoparticles using a hydroalcoholic extract of leaves was successful. In addition, the synthesized copper nanoparticles can be potentially employed in the treatment of various microbial infections due to their reported antioxidant, anti-bacterial, and anti-fungal activities.

摘要

使用植物提取物合成金属纳米粒子是绿色合成中一种很有前途的方法。本研究将 叶片的药用价值与金属铜的抗菌活性相结合,合成了具有附加值的无机材料铜纳米粒子。使用 叶的水醇提取物来绿色合成铜纳米粒子是一种很有吸引力的方法,因为它可以产生无害的化学物质并减少浪费。 叶提取物中的总酚含量为 23.0 ± 0.3 mg 没食子酸当量/ g 干燥 叶粉。将 叶提取物与硫酸铜溶液一起处理。颜色从棕色变为黑色表明铜纳米粒子的形成。使用紫外-可见分光光度法(UV-Vis)、傅里叶变换红外(FTIR)光谱法、高分辨率透射电子显微镜(HRTEM)、扫描电子显微镜(SEM)和 X 射线衍射(XRD)对合成的铜纳米粒子进行了表征。合成的铜纳米粒子具有非晶态性质,粒径为 35.8-49.2nm。我们证明,M. oleifera 叶提取物和合成的铜纳米粒子具有相当大的抗氧化活性。此外,M. oleifera 叶提取物和合成的铜纳米粒子对 、 、 、 和 (提取物的 MIC 值:500、250、250 和 250 µg/mL;铜纳米粒子的 MIC 值:500、500、500 和 250 µg/mL)表现出相当大的抗菌活性。同样,M. oleifera 叶提取物和合成的铜纳米粒子对 、 、 、 和 (提取物的 MIC 值:62.5、62.5、125 和 250 µg/mL;铜纳米粒子的 MIC 值:125、125、62.5 和 31.2 µg/mL)表现出相对较强的抗真菌活性。我们的研究表明,使用 叶的水醇提取物成功地进行了铜纳米粒子的绿色合成。此外,由于报道的抗氧化、抗菌和抗真菌活性,合成的铜纳米粒子可潜在用于治疗各种微生物感染。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ad74/7037650/f02512fc70fe/molecules-25-00555-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ad74/7037650/a19de3757bc6/molecules-25-00555-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ad74/7037650/d28208c69262/molecules-25-00555-sch001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ad74/7037650/8e7895ff733c/molecules-25-00555-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ad74/7037650/76e01e0b8b7a/molecules-25-00555-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ad74/7037650/a9835214d1fd/molecules-25-00555-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ad74/7037650/b66185268749/molecules-25-00555-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ad74/7037650/80f0a65bd56a/molecules-25-00555-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ad74/7037650/fde66fb12f56/molecules-25-00555-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ad74/7037650/f19b11530cb5/molecules-25-00555-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ad74/7037650/f02512fc70fe/molecules-25-00555-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ad74/7037650/a19de3757bc6/molecules-25-00555-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ad74/7037650/d28208c69262/molecules-25-00555-sch001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ad74/7037650/8e7895ff733c/molecules-25-00555-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ad74/7037650/76e01e0b8b7a/molecules-25-00555-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ad74/7037650/a9835214d1fd/molecules-25-00555-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ad74/7037650/b66185268749/molecules-25-00555-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ad74/7037650/80f0a65bd56a/molecules-25-00555-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ad74/7037650/fde66fb12f56/molecules-25-00555-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ad74/7037650/f19b11530cb5/molecules-25-00555-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ad74/7037650/f02512fc70fe/molecules-25-00555-g009.jpg

相似文献

[1]
Green Synthesis of Encapsulated Copper Nanoparticles Using a Hydroalcoholic Extract of Leaves and Assessment of Their Antioxidant and Antimicrobial Activities.

Molecules. 2020-1-28

[2]
Use of A Hydroalcoholic Extract of Leaves for the Green Synthesis of Bismuth Nanoparticles and Evaluation of Their Anti-Microbial and Antioxidant Activities.

Materials (Basel). 2020-2-15

[3]
RSM optimized Moringa oleifera peel extract for green synthesis of M. oleifera capped palladium nanoparticles with antibacterial and hemolytic property.

J Photochem Photobiol B. 2016-7-25

[4]
Obtaining titanium dioxide nanoparticles with spherical shape and antimicrobial properties using M. citrifolia leaves extract by hydrothermal method.

J Photochem Photobiol B. 2017-5-3

[5]
Novel synthesis of Falcaria vulgaris leaf extract conjugated copper nanoparticles with potent cytotoxicity, antioxidant, antifungal, antibacterial, and cutaneous wound healing activities under in vitro and in vivo condition.

J Photochem Photobiol B. 2019-7-15

[6]
Green synthesis of gold nanoparticles via seed extract: antioxidant, antibacterial and anticarcinogenic activity on lung cancer.

J Environ Sci Health A Tox Hazard Subst Environ Eng. 2024

[7]
Antimicrobial and antioxidant activities of defatted Moringa oleifera seed meal extract obtained by ultrasound-assisted extraction and application as a natural antimicrobial coating for raw chicken sausages.

Int J Food Microbiol. 2020-6-23

[8]
Green synthesis and characterization of silver nanoparticles from Moringa oleifera flower and assessment of antimicrobial and sensing properties.

J Photochem Photobiol B. 2020-2-21

[9]
Characterization, antioxidant and antimicrobial activities of green synthesized silver nanoparticles from Psidium guajava L. leaf aqueous extracts.

Mater Sci Eng C Mater Biol Appl. 2018-2-16

[10]
Biogenic synthesis of copper nanoparticles by natural polysaccharides and Pleurotus ostreatus fermented fenugreek using gamma rays with antioxidant and antimicrobial potential towards some wound pathogens.

Microb Pathog. 2018-3-9

引用本文的文献

[1]
Surface energetics of antibiofilm property of dental material added with green synthesized copper nanoparticles.

AMB Express. 2025-5-6

[2]
Valorization of Lam.: Healthy green biomass for circular bioeconomy.

Food Chem X. 2025-3-9

[3]
Biological properties of : A systematic review of the last decade.

F1000Res. 2025-1-30

[4]
Cu immobilized on MgZnFeO nanoparticles as a green catalyst in the synthesis of mono and bis-polyhydroquinolines.

Heliyon. 2024-9-4

[5]
Antimicrobial Activities of Natural Bioactive Polyphenols.

Pharmaceutics. 2024-5-27

[6]
Copper nanoparticles biosynthesis by Stevia rebaudiana extract: biocompatibility and antimicrobial application.

AMB Express. 2024-5-18

[7]
Leaf Extracts of Cultivated in Baghdad: Characterization and Antimicrobial Potential against Endodontic Pathogens.

ScientificWorldJournal. 2024

[8]
Drug Delivery of Gelatin Nanoparticles as a Biodegradable Polymer for the Treatment of Infectious Diseases: Perspectives and Challenges.

Polymers (Basel). 2023-11-5

[9]
Efficacy of copper nanoparticles encapsulated in soya lecithin liposomes in treating breast cancer cells (MCF-7) in vitro.

Sci Rep. 2023-9-20

[10]
leaf extract-mediated green synthesis, characterization, biological activities, photocatalytic degradation and embryo toxicity of copper nanoparticles.

RSC Adv. 2023-6-2

本文引用的文献

[1]
Mechanisms of Silver Nanoparticle Release, Transformation and Toxicity: A Critical Review of Current Knowledge and Recommendations for Future Studies and Applications.

Materials (Basel). 2013-6-5

[2]
Antimicrobial, Antioxidant and Cytotoxic Activity of Silver Nanoparticles Synthesized by Leaf Extract of (Roxb.).

Front Mol Biosci. 2017-3-17

[3]
Anti-Bacterial and Anti-Fungal Activity of Xanthones Obtained via Semi-Synthetic Modification of α-Mangostin from Garcinia mangostana.

Molecules. 2017-2-12

[4]
Biogenic synthesis of silver nanoparticles from (Linn.): assessment of their antioxidant, antimicrobial and cytotoxic activities.

IET Nanobiotechnol. 2016-12

[5]
A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: A green expertise.

J Adv Res. 2016-1

[6]
Polydiacetylene nanovesicles as carriers of natural phenylpropanoids for creating antimicrobial food-contact surfaces.

J Agric Food Chem. 2015-3-11

[7]
New paradigm shift for the green synthesis of antibacterial silver nanoparticles utilizing plant extracts.

Toxicol Res. 2014-9

[8]
Air-ozonolysis to generate contact active antimicrobial surfaces: activation of polyethylene and polystyrene followed by covalent graft of quaternary ammonium salts.

Colloids Surf B Biointerfaces. 2014-10-1

[9]
Green synthesis of silver nanoparticles from the extract of the inflorescence of Cocos nucifera (Family: Arecaceae) for enhanced antibacterial activity.

Spectrochim Acta A Mol Biomol Spectrosc. 2014-4-3

[10]
Plant extract: a promising biomatrix for ecofriendly, controlled synthesis of silver nanoparticles.

Appl Biochem Biotechnol. 2014-5

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索