Suppr超能文献

基于自学习神经模糊方法的脑控移动机器人智能控制系统。

Intelligent Control System for Brain-Controlled Mobile Robot Using Self-Learning Neuro-Fuzzy Approach.

机构信息

Faculty of Engineering, Free University of Bozen-Bolzano, 39100 Bozen-Bolzano, Italy.

Department of Informatics, Bioengineering, Robotics and Systems Engineering (DIBRIS), University of Genoa, 16126 Genova, Italy.

出版信息

Sensors (Basel). 2024 Sep 10;24(18):5875. doi: 10.3390/s24185875.

Abstract

Brain-computer interface (BCI) provides direct communication and control between the human brain and physical devices. It is achieved by converting EEG signals into control commands. Such interfaces have significantly improved the lives of disabled individuals suffering from neurological disorders-such as stroke, amyotrophic lateral sclerosis (ALS), and spinal cord injury-by extending their movement range and thereby promoting self-independence. Brain-controlled mobile robots, however, often face challenges in safety and control performance due to the inherent limitations of BCIs. This paper proposes a shared control scheme for brain-controlled mobile robots by utilizing fuzzy logic to enhance safety, control performance, and robustness. The proposed scheme is developed by combining a self-learning neuro-fuzzy (SLNF) controller with an obstacle avoidance controller (OAC). The SLNF controller robustly tracks the user's intentions, and the OAC ensures the safety of the mobile robot following the BCI commands. Furthermore, SLNF is a model-free controller that can learn as well as update its parameters online, diminishing the effect of disturbances. The experimental results prove the efficacy and robustness of the proposed SLNF controller including a higher task completion rate of 94.29% (compared to 79.29%, and 92.86% for Direct BCI and Fuzzy-PID, respectively), a shorter average task completion time of 85.31 s (compared to 92.01 s and 86.16 s for Direct BCI and Fuzzy-PID, respectively), and reduced settling time and overshoot.

摘要

脑机接口 (BCI) 为人类大脑和物理设备之间提供了直接的通信和控制。它通过将 EEG 信号转换为控制命令来实现。此类接口通过扩展残疾个体的运动范围,显著改善了患有神经障碍(如中风、肌萎缩侧索硬化症 (ALS) 和脊髓损伤)的残疾个体的生活,从而促进了他们的独立性。然而,脑控移动机器人由于 BCI 的固有局限性,常常面临安全和控制性能方面的挑战。本文提出了一种脑控移动机器人的共享控制方案,利用模糊逻辑提高安全性、控制性能和鲁棒性。所提出的方案是通过将自学习神经模糊 (SLNF) 控制器与障碍物回避控制器 (OAC) 相结合来开发的。SLNF 控制器可以稳健地跟踪用户的意图,而 OAC 可以确保移动机器人在遵循 BCI 命令时的安全性。此外,SLNF 是一种无模型控制器,可以在线学习和更新其参数,减少干扰的影响。实验结果证明了所提出的 SLNF 控制器的有效性和鲁棒性,包括更高的任务完成率 94.29%(相比之下,直接 BCI 和模糊-PID 的任务完成率分别为 79.29%和 92.86%)、更短的平均任务完成时间 85.31s(相比之下,直接 BCI 和模糊-PID 的任务完成时间分别为 92.01s 和 86.16s),以及减少的稳定时间和超调。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5223/11435685/a2b2d908e354/sensors-24-05875-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验