Suppr超能文献

基于节点能耗率预测的无线可充电传感器网络充电调度方法

Charging Scheduling Method for Wireless Rechargeable Sensor Networks Based on Energy Consumption Rate Prediction for Nodes.

作者信息

Huang Songjiang, Sha Chao, Zhu Xinyi, Wang Jingwen, Wang Ruchuan

机构信息

School of Computer Science, Software and Cyberspace Security, Nanjing University of Posts and Telecommunications, Nanjing 210003, China.

出版信息

Sensors (Basel). 2024 Sep 12;24(18):5931. doi: 10.3390/s24185931.

Abstract

With the development of the IoT, Wireless Rechargeable Sensor Networks (WRSNs) derive more and more application scenarios with diverse performance requirements. In scenarios where the energy consumption rate of sensor nodes changes dynamically, most existing charging scheduling methods are not applicable. The incorrect estimation of node energy requirement may lead to the death of critical nodes, resulting in missing events. To address this issue, we consider both the spatial imbalance and temporal dynamics of the energy consumption of the nodes, and minimize the Event Missing Rate (EMR) as the goal. Firstly, an Energy Consumption Balanced Tree (ECBT) construction method is proposed to prolong the lifetime of each node. Then, we transform the goal into Maximizing the value of the Evaluation function of each node's Energy Consumption Rate prediction (MEECR). Afterwards, the setting of the evaluation function is explored and the MEECR is further transformed into a variant of the knapsack problem, namely "the alternating backpack problem", and solved by dynamic programming. After predicting the energy consumption rate of the nodes, a charging scheduling scheme that meets the Dual Constraints of Nodes' energy requirements and MC's capability (DCNM) is developed. Simulations demonstrate the advantages of the proposed method. Compared to the baselines, the EMR was reduced by an average of 35.2% and 26.9%.

摘要

随着物联网的发展,无线可充电传感器网络(WRSN)衍生出越来越多具有不同性能要求的应用场景。在传感器节点能耗率动态变化的场景中,大多数现有的充电调度方法并不适用。对节点能量需求的错误估计可能导致关键节点死亡,从而导致事件遗漏。为了解决这个问题,我们同时考虑节点能耗的空间不平衡和时间动态性,并以最小化事件遗漏率(EMR)为目标。首先,提出一种能耗平衡树(ECBT)构建方法来延长每个节点的寿命。然后,我们将目标转化为最大化每个节点能耗率预测评估函数的值(MEECR)。之后,探索评估函数的设置,并将MEECR进一步转化为背包问题的一个变体,即“交替背包问题”,并通过动态规划求解。在预测节点的能耗率之后,制定了一种满足节点能量需求和移动充电器(MC)能力双重约束的充电调度方案(DCNM)。仿真结果证明了所提方法的优势。与基线方法相比,EMR平均降低了35.2%和26.9%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f83e/11435453/d25ebc85f2fe/sensors-24-05931-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验