Suppr超能文献

多点超材料启发式微波传感器在早期脑肿瘤诊断中的应用。

Multiple-Point Metamaterial-Inspired Microwave Sensors for Early-Stage Brain Tumor Diagnosis.

机构信息

Department of Electrical and Computer Engineering, College of Engineering and Computer Science, The University of Texas Rio Grande Valley, Edinburg, TX 78539, USA.

出版信息

Sensors (Basel). 2024 Sep 13;24(18):5953. doi: 10.3390/s24185953.

Abstract

Simple, instantaneous, contactless, multiple-point metamaterial-inspired microwave sensors, composed of multi-band, low-profile metamaterial-inspired antennas, were developed to detect and identify meningioma tumors, the most common primary brain tumors. Based on a typical meningioma tumor size of 5-20 mm, a higher operating frequency, where the wavelength is similar or smaller than the tumor target, is crucial. The sensors, designed for the microwave Ku band range (12-18 GHz), where the electromagnetic property values of tumors are available, were implemented in this study. A seven-layered head phantom, including the meningioma tumors, was defined using actual electromagnetic parametric values in the frequency range of interest to mimic the actual human head. The reflection coefficients can be recorded and analyzed instantaneously, reducing high electromagnetic radiation consumption. It has been shown that a single-band detection point is not adequate to classify the nonlinear tumor and head model parameters. On the other hand, dual-band and tri-band metamaterial-inspired antennas, with additional detecting points, create a continuous function solution for the nonlinear problem by adding extra observation points using multiple-band excitation. The point mapping values can be used to enhance the tumor detection capability. Two-point mapping showed a consistent trend between the S value order and the tumor size, while three-point mapping can also be used to demonstrate the correlation between the S value order and the tumor size. This proposed multi-detection point technique can be applied to a sensor for other nonlinear property targets. Moreover, a set of antennas with different polarizations, orientations, and arrangements in a network could help to obtain the highest sensitivity and accuracy of the whole system.

摘要

简单、即时、非接触、多点基于超材料的微波传感器,由多频带、低剖面超材料启发的天线组成,用于检测和识别脑膜瘤肿瘤,这是最常见的原发性脑肿瘤。基于典型脑膜瘤肿瘤大小为 5-20 毫米,更高的工作频率至关重要,其中波长与肿瘤目标相似或更小。本研究中设计的传感器用于微波 Ku 波段(12-18GHz),在该波段可以获得肿瘤的电磁特性值。使用感兴趣频率范围内的实际电磁参数值定义了包括脑膜瘤肿瘤的七层头部体模,以模拟实际人体头部。可以记录和分析反射系数,从而即时完成分析,减少对高电磁辐射的消耗。已经表明,单个检测点不足以对非线性肿瘤和头部模型参数进行分类。另一方面,双频带和三频带超材料启发的天线,通过使用多频带激励增加额外的检测点,为非线性问题创建连续函数解决方案。点映射值可用于增强肿瘤检测能力。两点映射显示 S 值阶数和肿瘤大小之间存在一致趋势,而三点映射也可用于显示 S 值阶数和肿瘤大小之间的相关性。所提出的多检测点技术可应用于具有其他非线性特性目标的传感器。此外,一组具有不同极化、方向和排列的天线在网络中可以帮助获得整个系统的最高灵敏度和准确性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验