Suppr超能文献

基于改进条件生成对抗网络的近地表气温估算

Near-Surface Air Temperature Estimation Based on an Improved Conditional Generative Adversarial Network.

作者信息

Zheng Jiaqi, Wu Xi, Li Xiaojie, Peng Jing

机构信息

Department of Computer Science, Chengdu University of Information Technology, Chengdu 610225, China.

出版信息

Sensors (Basel). 2024 Sep 14;24(18):5972. doi: 10.3390/s24185972.

Abstract

To address the issue of missing near-surface air temperature data caused by the uneven distribution of ground meteorological observation stations, we propose a method for near-surface air temperature estimation based on an improved conditional generative adversarial network (CGAN) framework. Leveraging the all-weather coverage advantage of Fengyun meteorological satellites, Fengyun-4A (FY-4A) satellite remote sensing data are utilized as conditional guiding information for the CGAN, helping to direct and constrain the near-surface air temperature estimation process. In the proposed network model of the method based on the conditional generative adversarial network structure, the generator combining a self-attention mechanism and cascaded residual blocks is designed with U-Net as the backbone, which extracts implicit feature information and suppresses the irrelevant information in the Fengyun satellite data. Furthermore, a discriminator with multi-level and multi-scale spatial feature fusion is constructed to enhance the network's perception of details and the global structure, enabling accurate air temperature estimation. The experimental results demonstrate that, compared with Attention U-Net, Pix2pix, and other deep learning models, the method presents significant improvements of 68.75% and 10.53%, respectively in the root mean square error (RMSE) and Pearson's correlation coefficient (CC). These results indicate the superior performance of the proposed model for near-surface air temperature estimation.

摘要

为解决地面气象观测站分布不均导致近地面气温数据缺失的问题,我们提出了一种基于改进条件生成对抗网络(CGAN)框架的近地面气温估算方法。利用风云气象卫星的全天候覆盖优势,将风云四号A(FY-4A)卫星遥感数据用作CGAN的条件引导信息,有助于指导和约束近地面气温估算过程。在所提出的基于条件生成对抗网络结构的方法的网络模型中,以U-Net为骨干设计了结合自注意力机制和级联残差块的生成器,该生成器提取隐含特征信息并抑制风云卫星数据中的无关信息。此外,构建了具有多级多尺度空间特征融合的判别器,以增强网络对细节和全局结构的感知,从而实现准确的气温估算。实验结果表明,与注意力U-Net、Pix2pix等深度学习模型相比,该方法在均方根误差(RMSE)和皮尔逊相关系数(CC)方面分别有68.75%和10.53%的显著提升。这些结果表明所提出的模型在近地面气温估算方面具有卓越性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4724/11436124/434ec7378591/sensors-24-05972-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验