Suppr超能文献

基于密集空洞卷积的生物医学图像分割算法。

Biomedical image segmentation algorithm based on dense atrous convolution.

机构信息

College of Computer Science and Technology, Xi'an University of Science and Technology, Xi'an, 710054, China.

State Key Laboratory of Virtual Reality Technology and Systems, Beihang University, Beijing, 100191, China.

出版信息

Math Biosci Eng. 2024 Feb 26;21(3):4351-4369. doi: 10.3934/mbe.2024192.

Abstract

Biomedical images have complex tissue structures, and there are great differences between images of the same part of different individuals. Although deep learning methods have made some progress in automatic segmentation of biomedical images, the segmentation accuracy is relatively low for biomedical images with significant changes in segmentation targets, and there are also problems of missegmentation and missed segmentation. To address these challenges, we proposed a biomedical image segmentation method based on dense atrous convolution. First, we added a dense atrous convolution module (DAC) between the encoding and decoding paths of the U-Net network. This module was based on the inception structure and atrous convolution design, which can effectively capture multi-scale features of images. Second, we introduced a dense residual pooling module to detect multi-scale features in images by connecting residual pooling blocks of different sizes. Finally, in the decoding part of the network, we adopted an attention mechanism to suppress background interference by enhancing the weight of the target area. These modules work together to improve the accuracy and robustness of biomedical image segmentation. The experimental results showed that compared to mainstream segmentation networks, our segmentation model exhibited stronger segmentation ability when processing biomedical images with multiple-shaped targets. At the same time, this model can significantly reduce the phenomenon of missed segmentation and missegmentation, improve segmentation accuracy, and make the segmentation results closer to the real situation.

摘要

生物医学图像具有复杂的组织结构,并且同一部位的不同个体的图像之间存在很大差异。尽管深度学习方法在生物医学图像的自动分割方面取得了一些进展,但对于分割目标变化较大的生物医学图像,分割精度相对较低,并且还存在误分割和漏分割的问题。为了解决这些挑战,我们提出了一种基于密集空洞卷积的生物医学图像分割方法。首先,我们在 U-Net 网络的编码和解码路径之间添加了一个密集空洞卷积模块(DAC)。该模块基于 inception 结构和空洞卷积设计,可以有效地捕获图像的多尺度特征。其次,我们引入了密集残差池化模块,通过连接不同大小的残差池化块来检测图像中的多尺度特征。最后,在网络的解码部分,我们采用了注意力机制,通过增强目标区域的权重来抑制背景干扰。这些模块共同作用,提高了生物医学图像分割的准确性和鲁棒性。实验结果表明,与主流分割网络相比,我们的分割模型在处理多形状目标的生物医学图像时具有更强的分割能力。同时,该模型可以显著减少漏分割和误分割的现象,提高分割精度,使分割结果更接近实际情况。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验