ASD-Net:一种新颖的基于 U-Net 的非对称空间-通道卷积网络,用于精确的肾脏和肾肿瘤图像分割。

ASD-Net: a novel U-Net based asymmetric spatial-channel convolution network for precise kidney and kidney tumor image segmentation.

机构信息

Department of Artificial Intelligence, North China University of Science and Technology, Tangshan, 063009, People's Republic of China.

Department of Computing, Xi'an Jiaotong-Liverpool University, Suzhou, People's Republic of China.

出版信息

Med Biol Eng Comput. 2024 Jun;62(6):1673-1687. doi: 10.1007/s11517-024-03025-y. Epub 2024 Feb 8.

Abstract

Early intervention in tumors can greatly improve human survival rates. With the development of deep learning technology, automatic image segmentation has taken a prominent role in the field of medical image analysis. Manually segmenting kidneys on CT images is a tedious task, and due to the diversity of these images and varying technical skills of professionals, segmentation results can be inconsistent. To address this problem, a novel ASD-Net network is proposed in this paper for kidney and kidney tumor segmentation tasks. First, the proposed network employs newly designed Adaptive Spatial-channel Convolution Optimization (ASCO) blocks to capture anisotropic information in the images. Then, other newly designed blocks, i.e., Dense Dilated Enhancement Convolution (DDEC) blocks, are utilized to enhance feature propagation and reuse it across the network, thereby improving its segmentation accuracy. To allow the network to segment complex and small kidney tumors more effectively, the Atrous Spatial Pyramid Pooling (ASPP) module is incorporated in its middle layer. With its generalized pyramid feature, this module enables the network to better capture and understand context information at various scales within the images. In addition to this, the concurrent spatial and channel squeeze & excitation (scSE) attention mechanism is adopted to better comprehend and manage context information in the images. Additional encoding layers are also added to the base (U-Net) and connected to the original encoding layer through skip connections. The resultant enhanced U-Net structure allows for better extraction and merging of high-level and low-level features, further boosting the network's ability to restore segmentation details. In addition, the combined Binary Cross Entropy (BCE)-Dice loss is utilized as the network's loss function. Experiments, conducted on the KiTS19 dataset, demonstrate that the proposed ASD-Net network outperforms the existing segmentation networks according to all evaluation metrics used, except for recall in the case of kidney tumor segmentation, where it takes the second place after Attention-UNet.

摘要

早期干预肿瘤可以大大提高人类的存活率。随着深度学习技术的发展,自动图像分割在医学图像分析领域中发挥了重要作用。手动在 CT 图像上分割肾脏是一项繁琐的任务,而且由于这些图像的多样性和专业人员技术技能的不同,分割结果可能不一致。针对这个问题,本文提出了一种新的 ASD-Net 网络,用于肾脏和肾肿瘤的分割任务。首先,所提出的网络采用新设计的自适应空间-通道卷积优化(ASCO)块来捕获图像中的各向异性信息。然后,利用新设计的其他块,即密集扩张增强卷积(DDEC)块,来增强特征传播并在网络中重复使用,从而提高分割精度。为了使网络能够更有效地分割复杂和小的肾肿瘤,在其中间层中引入了空洞空间金字塔池化(ASPP)模块。该模块具有广义的金字塔特征,使网络能够更好地在图像的不同尺度上捕捉和理解上下文信息。此外,采用并发空间和通道挤压和激励(scSE)注意力机制,以更好地理解和管理图像中的上下文信息。还在基础(U-Net)上添加了额外的编码层,并通过跳过连接与原始编码层连接。增强的 U-Net 结构可以更好地提取和融合高层和低层特征,从而进一步提高网络恢复分割细节的能力。此外,还使用了组合的二进制交叉熵(BCE)-Dice 损失作为网络的损失函数。在 KiTS19 数据集上进行的实验表明,所提出的 ASD-Net 网络在所有使用的评估指标上都优于现有的分割网络,除了在肾肿瘤分割的情况下,它在 Attention-UNet 之后排名第二。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/45e0/11076390/260b2a835cae/11517_2024_3025_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索