Tian Wuxin, Shen Yanping, Guo Na, Yuan Jing, Yang Yanqing
School of Information Engineering, Institute of Disaster Prevention, Beijing 101601, China.
College of Information Science and Engineering, Xinjiang University, Urumqi 830046, China.
Sensors (Basel). 2024 Sep 18;24(18):6035. doi: 10.3390/s24186035.
To address the class imbalance issue in network intrusion detection, which degrades performance of intrusion detection models, this paper proposes a novel generative model called VAE-WACGAN to generate minority class samples and balance the dataset. This model extends the Variational Autoencoder Generative Adversarial Network (VAEGAN) by integrating key features from the Auxiliary Classifier Generative Adversarial Network (ACGAN) and the Wasserstein Generative Adversarial Network with Gradient Penalty (WGAN-GP). These enhancements significantly improve both the quality of generated samples and the stability of the training process. By utilizing the VAE-WACGAN model to oversample anomalous data, more realistic synthetic anomalies that closely mirror the actual network traffic distribution can be generated. This approach effectively balances the network traffic dataset and enhances the overall performance of the intrusion detection model. Experimental validation was conducted using two widely utilized intrusion detection datasets, UNSW-NB15 and CIC-IDS2017. The results demonstrate that the VAE-WACGAN method effectively enhances the performance metrics of the intrusion detection model. Furthermore, the VAE-WACGAN-based intrusion detection approach surpasses several other advanced methods, underscoring its effectiveness in tackling network security challenges.
为了解决网络入侵检测中的类别不平衡问题(该问题会降低入侵检测模型的性能),本文提出了一种名为VAE-WACGAN的新型生成模型,用于生成少数类样本并平衡数据集。该模型通过整合来自辅助分类器生成对抗网络(ACGAN)和带梯度惩罚的瓦瑟斯坦生成对抗网络(WGAN-GP)的关键特性,对变分自编码器生成对抗网络(VAEGAN)进行了扩展。这些改进显著提高了生成样本的质量以及训练过程的稳定性。通过使用VAE-WACGAN模型对异常数据进行过采样,可以生成更接近实际网络流量分布的更逼真的合成异常。这种方法有效地平衡了网络流量数据集,并提高了入侵检测模型的整体性能。使用两个广泛使用的入侵检测数据集UNSW-NB15和CIC-IDS2017进行了实验验证。结果表明,VAE-WACGAN方法有效地提高了入侵检测模型的性能指标。此外,基于VAE-WACGAN的入侵检测方法优于其他几种先进方法,突出了其在应对网络安全挑战方面的有效性。