Zhang Aoran, Yu Yonghong, Li Shenglong, Gao Rong, Zhang Li, Gao Shang
School of Computer Science, Jiangsu University of Science and Technology, Zhenjiang 212000, China.
College of Tongda, Nanjing University of Posts and Telecommunication, Yangzhou 225127, China.
Sensors (Basel). 2024 Sep 19;24(18):6061. doi: 10.3390/s24186061.
Personalized tag recommendation algorithms generate personalized tag lists for users by learning the tagging preferences of users. Traditional personalized tag recommendation systems are limited by the problem of data sparsity, making the personalized tag recommendation models unable to accurately learn the embeddings of users, items, and tags. To address this issue, we propose a contrastive learning-based personalized tag recommendation algorithm, namely CLPTR. Specifically, CLPTR generates augmented views of user-tag and item-tag interaction graphs by injecting noises into implicit feature representations rather than dropping nodes and edges. Hence, CLPTR is able to greatly preserve the underlying semantics of the original user-tag or the item-tag interaction graphs and avoid destroying their structural information. In addition, we integrate the contrastive learning module into a graph neural network-based personalized tag recommendation model, which enables the model to extract self-supervised signals from user-tag and item-tag interaction graphs. We conduct extensive experiments on real-world datasets, and the experimental results demonstrate the state-of-the-art performance of our proposed CLPTR compared with traditional personalized tag recommendation models.
个性化标签推荐算法通过学习用户的标签偏好为用户生成个性化标签列表。传统的个性化标签推荐系统受到数据稀疏性问题的限制,使得个性化标签推荐模型无法准确学习用户、物品和标签的嵌入。为了解决这个问题,我们提出了一种基于对比学习的个性化标签推荐算法,即CLPTR。具体来说,CLPTR通过向隐式特征表示中注入噪声来生成用户-标签和物品-标签交互图的增强视图,而不是删除节点和边。因此,CLPTR能够极大地保留原始用户-标签或物品-标签交互图的潜在语义,并避免破坏其结构信息。此外,我们将对比学习模块集成到基于图神经网络的个性化标签推荐模型中,这使得模型能够从用户-标签和物品-标签交互图中提取自监督信号。我们在真实世界数据集上进行了广泛的实验,实验结果表明,与传统的个性化标签推荐模型相比,我们提出的CLPTR具有领先的性能。