School of Software, Xinjiang University, 666, Shengli Road, Urumqi 830049, China.
Sensors (Basel). 2023 Jun 14;23(12):5572. doi: 10.3390/s23125572.
Sequential recommendation uses contrastive learning to randomly augment user sequences and alleviate the data sparsity problem. However, there is no guarantee that the augmented positive or negative views remain semantically similar. To address this issue, we propose graph neural network-guided contrastive learning for sequential recommendation (GC4SRec). The guided process employs graph neural networks to obtain user embeddings, an encoder to determine the importance score of each item, and various data augmentation methods to construct a contrast view based on the importance score. Experimental validation is conducted on three publicly available datasets, and the experimental results demonstrate that GC4SRec improves the hit rate and normalized discounted cumulative gain metrics by 1.4% and 1.7%, respectively. The model can enhance recommendation performance and mitigate the data sparsity problem.
序列推荐使用对比学习随机扩充用户序列,缓解数据稀疏问题。然而,不能保证扩充后的正例或负例视图仍然保持语义相似。为了解决这个问题,我们提出了一种基于图神经网络引导的序列推荐对比学习方法(GC4SRec)。引导过程使用图神经网络获取用户嵌入表示,使用编码器确定每个项目的重要性得分,以及使用各种数据扩充方法基于重要性得分构建对比视图。在三个公开可用的数据集上进行了实验验证,实验结果表明,GC4SRec 分别提高了 1.4%和 1.7%的命中率和归一化折扣累积增益指标。该模型可以增强推荐性能并缓解数据稀疏问题。