Suppr超能文献

图神经网络引导的序列推荐对比学习。

Graph Neural Network-Guided Contrastive Learning for Sequential Recommendation.

机构信息

School of Software, Xinjiang University, 666, Shengli Road, Urumqi 830049, China.

出版信息

Sensors (Basel). 2023 Jun 14;23(12):5572. doi: 10.3390/s23125572.

Abstract

Sequential recommendation uses contrastive learning to randomly augment user sequences and alleviate the data sparsity problem. However, there is no guarantee that the augmented positive or negative views remain semantically similar. To address this issue, we propose graph neural network-guided contrastive learning for sequential recommendation (GC4SRec). The guided process employs graph neural networks to obtain user embeddings, an encoder to determine the importance score of each item, and various data augmentation methods to construct a contrast view based on the importance score. Experimental validation is conducted on three publicly available datasets, and the experimental results demonstrate that GC4SRec improves the hit rate and normalized discounted cumulative gain metrics by 1.4% and 1.7%, respectively. The model can enhance recommendation performance and mitigate the data sparsity problem.

摘要

序列推荐使用对比学习随机扩充用户序列,缓解数据稀疏问题。然而,不能保证扩充后的正例或负例视图仍然保持语义相似。为了解决这个问题,我们提出了一种基于图神经网络引导的序列推荐对比学习方法(GC4SRec)。引导过程使用图神经网络获取用户嵌入表示,使用编码器确定每个项目的重要性得分,以及使用各种数据扩充方法基于重要性得分构建对比视图。在三个公开可用的数据集上进行了实验验证,实验结果表明,GC4SRec 分别提高了 1.4%和 1.7%的命中率和归一化折扣累积增益指标。该模型可以增强推荐性能并缓解数据稀疏问题。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d04b/10303316/91c3839ecd25/sensors-23-05572-g001.jpg

相似文献

2
Adaptive self-supervised learning for sequential recommendation.自适应自监督学习在序列推荐中的应用。
Neural Netw. 2024 Nov;179:106570. doi: 10.1016/j.neunet.2024.106570. Epub 2024 Jul 24.
6
Multitype view of knowledge contrastive learning for recommendation.用于推荐的知识对比学习的多类型视图
Neural Netw. 2025 Jan;181:106690. doi: 10.1016/j.neunet.2024.106690. Epub 2024 Sep 12.
7
Contrastive learning of graphs under label noise.图在标签噪声下的对比学习。
Neural Netw. 2024 Apr;172:106113. doi: 10.1016/j.neunet.2024.106113. Epub 2024 Jan 6.
9
Local structure-aware graph contrastive representation learning.基于局部结构感知的图对比表示学习。
Neural Netw. 2024 Apr;172:106083. doi: 10.1016/j.neunet.2023.12.037. Epub 2023 Dec 27.
10
Multi-granularity contrastive learning model for next POI recommendation.用于下一个兴趣点推荐的多粒度对比学习模型。
Front Neurorobot. 2024 Jun 14;18:1428785. doi: 10.3389/fnbot.2024.1428785. eCollection 2024.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验