文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

交通系统运行与维护的数字孪生方法——系统综述

Digital Twin Approach for Operation and Maintenance of Transportation System-Systematic Review.

作者信息

Werbińska-Wojciechowska Sylwia, Giel Robert, Winiarska Klaudia

机构信息

Faculty of Mechanical Engineering, Wroclaw University of Science and Technology, Wyspianskiego 27, 50-370 Wroclaw, Poland.

出版信息

Sensors (Basel). 2024 Sep 19;24(18):6069. doi: 10.3390/s24186069.


DOI:10.3390/s24186069
PMID:39338814
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11435829/
Abstract

There is a growing need to implement modern technologies, such as digital twinning, to improve the efficiency of transport fleet maintenance processes and maintain company operational capacity at the required level. A comprehensive review of the existing literature is conducted to address this, offering an up-to-date analysis of relevant content in this field. The methodology employed is a systematic literature review using the Primo multi-search tool, adhering to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. The selection criteria focused on English studies published between 2012 and 2024, resulting in 201 highly relevant papers. These papers were categorized into seven groups: (a) air transportation, (b) railway transportation, (c) land transportation (road), (d) in-house logistics, (e) water and intermodal transportation, (f) supply chain operation, and (g) other applications. A notable strength of this study is its use of diverse scientific databases facilitated by the multi-search tool. Additionally, a bibliometric analysis was performed, revealing the evolution of DT applications over the past decade and identifying key areas such as predictive maintenance, condition monitoring, and decision-making processes. This study highlights the varied levels of adoption across different transport sectors and underscores promising areas for future development, particularly in underrepresented domains like supply chains and water transport. Additionally, this paper identifies significant research gaps, including integration challenges, real-time data processing, and standardization needs. Future research directions are proposed, focusing on enhancing predictive diagnostics, automating maintenance processes, and optimizing inventory management. This study also outlines a framework for DT in transportation systems, detailing key components and functionalities essential for effective maintenance management. The findings provide a roadmap for future innovations and improvements in DT applications within the transportation industry. This study ends with conclusions and future research directions.

摘要

为提高运输车队维护流程的效率并将公司运营能力维持在所需水平,采用数字孪生等现代技术的需求日益增长。为此,对现有文献进行了全面综述,对该领域的相关内容进行了最新分析。所采用的方法是使用Primo多搜索工具进行系统的文献综述,遵循系统评价和Meta分析的首选报告项目(PRISMA)指南。选择标准集中在2012年至2024年发表的英文研究,最终得到201篇高度相关的论文。这些论文分为七组:(a)航空运输,(b)铁路运输,(c)陆路运输(公路),(d)内部物流,(e)水路和多式联运,(f)供应链运营,以及(g)其他应用。本研究的一个显著优势是利用了多搜索工具提供的各种科学数据库。此外,还进行了文献计量分析,揭示了数字孪生应用在过去十年中的发展情况,并确定了预测性维护、状态监测和决策过程等关键领域。本研究强调了不同运输部门采用数字孪生的不同水平,并强调了未来发展的有前景领域,特别是在供应链和水路运输等代表性不足的领域。此外,本文还确定了重大研究差距,包括集成挑战、实时数据处理和标准化需求。提出了未来的研究方向,重点是加强预测诊断、自动化维护流程和优化库存管理。本研究还概述了运输系统中数字孪生的框架,详细说明了有效维护管理所需的关键组件和功能。研究结果为运输行业数字孪生应用的未来创新和改进提供了路线图。本研究最后给出了结论和未来研究方向。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e29/11435829/207009d86046/sensors-24-06069-g023.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e29/11435829/c534a8b0eaea/sensors-24-06069-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e29/11435829/6bf0656e8a85/sensors-24-06069-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e29/11435829/ea877e4ce575/sensors-24-06069-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e29/11435829/7c4a4537e9f4/sensors-24-06069-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e29/11435829/3b7130b0f405/sensors-24-06069-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e29/11435829/0a8f7f4a758c/sensors-24-06069-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e29/11435829/8dda50ffebda/sensors-24-06069-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e29/11435829/4dccda6ff60c/sensors-24-06069-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e29/11435829/217cf2536bf1/sensors-24-06069-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e29/11435829/b31c9c1fa0c2/sensors-24-06069-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e29/11435829/44569c342bab/sensors-24-06069-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e29/11435829/a15e2c33ed84/sensors-24-06069-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e29/11435829/f6860b367e4e/sensors-24-06069-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e29/11435829/cd51f7a52405/sensors-24-06069-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e29/11435829/baa500ee21a3/sensors-24-06069-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e29/11435829/f1e1f644bffc/sensors-24-06069-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e29/11435829/f32d78e7a85f/sensors-24-06069-g017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e29/11435829/0b11264fe5c4/sensors-24-06069-g018.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e29/11435829/ddb85cd55668/sensors-24-06069-g019.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e29/11435829/33788b3258ad/sensors-24-06069-g020.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e29/11435829/f852708dffd1/sensors-24-06069-g021.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e29/11435829/cc216c045f5f/sensors-24-06069-g022.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e29/11435829/207009d86046/sensors-24-06069-g023.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e29/11435829/c534a8b0eaea/sensors-24-06069-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e29/11435829/6bf0656e8a85/sensors-24-06069-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e29/11435829/ea877e4ce575/sensors-24-06069-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e29/11435829/7c4a4537e9f4/sensors-24-06069-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e29/11435829/3b7130b0f405/sensors-24-06069-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e29/11435829/0a8f7f4a758c/sensors-24-06069-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e29/11435829/8dda50ffebda/sensors-24-06069-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e29/11435829/4dccda6ff60c/sensors-24-06069-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e29/11435829/217cf2536bf1/sensors-24-06069-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e29/11435829/b31c9c1fa0c2/sensors-24-06069-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e29/11435829/44569c342bab/sensors-24-06069-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e29/11435829/a15e2c33ed84/sensors-24-06069-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e29/11435829/f6860b367e4e/sensors-24-06069-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e29/11435829/cd51f7a52405/sensors-24-06069-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e29/11435829/baa500ee21a3/sensors-24-06069-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e29/11435829/f1e1f644bffc/sensors-24-06069-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e29/11435829/f32d78e7a85f/sensors-24-06069-g017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e29/11435829/0b11264fe5c4/sensors-24-06069-g018.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e29/11435829/ddb85cd55668/sensors-24-06069-g019.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e29/11435829/33788b3258ad/sensors-24-06069-g020.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e29/11435829/f852708dffd1/sensors-24-06069-g021.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e29/11435829/cc216c045f5f/sensors-24-06069-g022.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e29/11435829/207009d86046/sensors-24-06069-g023.jpg

相似文献

[1]
Digital Twin Approach for Operation and Maintenance of Transportation System-Systematic Review.

Sensors (Basel). 2024-9-19

[2]
Folic acid supplementation and malaria susceptibility and severity among people taking antifolate antimalarial drugs in endemic areas.

Cochrane Database Syst Rev. 2022-2-1

[3]
Maintenance Performance in the Age of Industry 4.0: A Bibliometric Performance Analysis and a Systematic Literature Review.

Sensors (Basel). 2023-1-27

[4]
Systematic review of predictive maintenance and digital twin technologies challenges, opportunities, and best practices.

PeerJ Comput Sci. 2024-4-22

[5]
The 2023 Latin America report of the Countdown on health and climate change: the imperative for health-centred climate-resilient development.

Lancet Reg Health Am. 2024-4-23

[6]
The future of Cochrane Neonatal.

Early Hum Dev. 2020-11

[7]
The Effectiveness of Integrated Care Pathways for Adults and Children in Health Care Settings: A Systematic Review.

JBI Libr Syst Rev. 2009

[8]
Beyond the black stump: rapid reviews of health research issues affecting regional, rural and remote Australia.

Med J Aust. 2020-12

[9]
The Role of Large Language Models in Transforming Emergency Medicine: Scoping Review.

JMIR Med Inform. 2024-5-10

[10]
The application of Industry 4.0 technologies in sustainable logistics: a systematic literature review (2012-2020) to explore future research opportunities.

Environ Sci Pollut Res Int. 2022-2

引用本文的文献

[1]
Digital twin-driven management strategies for logistics transportation systems.

Sci Rep. 2025-4-9

本文引用的文献

[1]
Design of Evaluation Classification Algorithm for Identifying Conveyor Belt Mistracking in a Continuous Transport System's Digital Twin.

Sensors (Basel). 2024-6-13

[2]
Integration of Railway Bridge Structural Health Monitoring into the Internet of Things with a Digital Twin: A Case Study.

Sensors (Basel). 2024-3-26

[3]
Digital Twin of a Gear Root Crack Prognosis.

Sensors (Basel). 2023-12-17

[4]
Intelligent Warehouse in Industry 4.0-Systematic Literature Review.

Sensors (Basel). 2023-4-19

[5]
Overview of predictive maintenance based on digital twin technology.

Heliyon. 2023-3-13

[6]
Digital Twins in Industry 5.0.

Research (Wash D C). 2023

[7]
Internet of Everything and Digital Twin enabled Service Platform for Cold Chain Logistics.

J Ind Inf Integr. 2023-6

[8]
Overview of Digital Twin Platforms for EV Applications.

Sensors (Basel). 2023-1-27

[9]
Maintenance Performance in the Age of Industry 4.0: A Bibliometric Performance Analysis and a Systematic Literature Review.

Sensors (Basel). 2023-1-27

[10]
Railway infrastructure maintenance efficiency improvement using deep reinforcement learning integrated with digital twin based on track geometry and component defects.

Sci Rep. 2023-2-10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索