文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

预测性维护与数字孪生技术的挑战、机遇及最佳实践的系统综述

Systematic review of predictive maintenance and digital twin technologies challenges, opportunities, and best practices.

作者信息

Abd Wahab Nur Haninie, Hasikin Khairunnisa, Wee Lai Khin, Xia Kaijian, Bei Lulu, Huang Kai, Wu Xiang

机构信息

Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur, Malaysia.

Engineering Services Division, Ministry of Health Malaysia, Putrajaya, Malaysia.

出版信息

PeerJ Comput Sci. 2024 Apr 22;10:e1943. doi: 10.7717/peerj-cs.1943. eCollection 2024.


DOI:10.7717/peerj-cs.1943
PMID:38686003
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11057655/
Abstract

BACKGROUND: Maintaining machines effectively continues to be a challenge for industrial organisations, which frequently employ reactive or premeditated methods. Recent research has begun to shift its attention towards the application of Predictive Maintenance (PdM) and Digital Twins (DT) principles in order to improve maintenance processes. PdM technologies have the capacity to significantly improve profitability, safety, and sustainability in various industries. Significantly, precise equipment estimation, enabled by robust supervised learning techniques, is critical to the efficacy of PdM in conjunction with DT development. This study underscores the application of PdM and DT, exploring its transformative potential across domains demanding real-time monitoring. Specifically, it delves into emerging fields in healthcare, utilities (smart water management), and agriculture (smart farm), aligning with the latest research frontiers in these areas. METHODOLOGY: Employing the Preferred Reporting Items for Systematic Review and Meta-Analyses (PRISMA) criteria, this study highlights diverse modeling techniques shaping asset lifetime evaluation within the PdM context from 34 scholarly articles. RESULTS: The study revealed four important findings: various PdM and DT modelling techniques, their diverse approaches, predictive outcomes, and implementation of maintenance management. These findings align with the ongoing exploration of emerging applications in healthcare, utilities (smart water management), and agriculture (smart farm). In addition, it sheds light on the critical functions of PdM and DT, emphasising their extraordinary ability to drive revolutionary change in dynamic industrial challenges. The results highlight these methodologies' flexibility and application across many industries, providing vital insights into their potential to revolutionise asset management and maintenance practice for real-time monitoring. CONCLUSIONS: Therefore, this systematic review provides a current and essential resource for academics, practitioners, and policymakers to refine PdM strategies and expand the applicability of DT in diverse industrial sectors.

摘要

背景:对于经常采用被动或预先计划方法的工业组织来说,有效维护机器仍然是一项挑战。最近的研究已开始将注意力转向预测性维护(PdM)和数字孪生(DT)原则的应用,以改进维护流程。PdM技术有能力显著提高各行业的盈利能力、安全性和可持续性。重要的是,强大的监督学习技术实现的精确设备评估对于PdM与DT开发相结合的有效性至关重要。本研究强调了PdM和DT的应用,探索其在需要实时监测的领域的变革潜力。具体而言,它深入研究了医疗保健、公用事业(智能水管理)和农业(智能农场)等新兴领域,与这些领域的最新研究前沿保持一致。 方法:本研究采用系统评价和荟萃分析的首选报告项目(PRISMA)标准,从34篇学术文章中突出了在PdM背景下塑造资产寿命评估的各种建模技术。 结果:该研究揭示了四个重要发现:各种PdM和DT建模技术、它们的不同方法、预测结果以及维护管理的实施。这些发现与正在进行的对医疗保健、公用事业(智能水管理)和农业(智能农场)等新兴应用的探索相一致。此外,它还阐明了PdM和DT的关键作用,强调了它们在应对动态工业挑战方面推动变革性变化的非凡能力。结果突出了这些方法在许多行业中的灵活性和适用性,为它们在实时监测中革新资产管理和维护实践的潜力提供了重要见解。 结论:因此,本系统评价为学者、从业者和政策制定者完善PdM策略并扩大DT在不同工业部门的适用性提供了当前的重要资源。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5c8d/11057655/cbb53d9a6816/peerj-cs-10-1943-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5c8d/11057655/49b007be86b8/peerj-cs-10-1943-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5c8d/11057655/b6ccb6ecc9cc/peerj-cs-10-1943-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5c8d/11057655/596d3255d66c/peerj-cs-10-1943-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5c8d/11057655/5149210c8737/peerj-cs-10-1943-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5c8d/11057655/5952a369d661/peerj-cs-10-1943-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5c8d/11057655/7c018a9794f7/peerj-cs-10-1943-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5c8d/11057655/ed270011d02f/peerj-cs-10-1943-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5c8d/11057655/88ef53d9b3b5/peerj-cs-10-1943-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5c8d/11057655/2fa5e28dfba9/peerj-cs-10-1943-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5c8d/11057655/7304cf794bde/peerj-cs-10-1943-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5c8d/11057655/cbb53d9a6816/peerj-cs-10-1943-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5c8d/11057655/49b007be86b8/peerj-cs-10-1943-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5c8d/11057655/b6ccb6ecc9cc/peerj-cs-10-1943-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5c8d/11057655/596d3255d66c/peerj-cs-10-1943-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5c8d/11057655/5149210c8737/peerj-cs-10-1943-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5c8d/11057655/5952a369d661/peerj-cs-10-1943-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5c8d/11057655/7c018a9794f7/peerj-cs-10-1943-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5c8d/11057655/ed270011d02f/peerj-cs-10-1943-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5c8d/11057655/88ef53d9b3b5/peerj-cs-10-1943-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5c8d/11057655/2fa5e28dfba9/peerj-cs-10-1943-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5c8d/11057655/7304cf794bde/peerj-cs-10-1943-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5c8d/11057655/cbb53d9a6816/peerj-cs-10-1943-g011.jpg

相似文献

[1]
Systematic review of predictive maintenance and digital twin technologies challenges, opportunities, and best practices.

PeerJ Comput Sci. 2024-4-22

[2]
Predictive maintenance in Industry 4.0: a survey of planning models and machine learning techniques.

PeerJ Comput Sci. 2024-5-14

[3]
Towards a Distributed Digital Twin Framework for Predictive Maintenance in Industrial Internet of Things (IIoT).

Sensors (Basel). 2024-4-22

[4]
Exploring Digital Twin-Based Fault Monitoring: Challenges and Opportunities.

Sensors (Basel). 2023-8-10

[5]
Digital Twin Approach for Operation and Maintenance of Transportation System-Systematic Review.

Sensors (Basel). 2024-9-19

[6]
Next-generation predictive maintenance: leveraging blockchain and dynamic deep learning in a domain-independent system.

PeerJ Comput Sci. 2023-12-6

[7]
Digital twin-driven prognostics and health management for industrial assets.

Sci Rep. 2024-6-11

[8]
The future of Cochrane Neonatal.

Early Hum Dev. 2020-11

[9]
Systematic Literature Review on Visual Analytics of Predictive Maintenance in the Manufacturing Industry.

Sensors (Basel). 2022-8-23

[10]
Predictive Maintenance for Pump Systems and Thermal Power Plants: State-of-the-Art Review, Trends and Challenges.

Sensors (Basel). 2020-4-24

引用本文的文献

[1]
A Digital Twin Strategy to Predict Thrombotic Recurrence in Antiphospholipid Syndrome Patients Treated with Direct Oral Anticoagulants vs. Vitamin K Antagonists Using Data from Real-World Populations.

J Clin Med. 2025-8-12

本文引用的文献

[1]
A method for analyzing text using VOSviewer.

MethodsX. 2023-8-22

[2]
Deep learning in preclinical antibody drug discovery and development.

Methods. 2023-10

[3]
Predicting medical device failure: a promise to reduce healthcare facilities cost through smart healthcare management.

PeerJ Comput Sci. 2023-4-3

[4]
Overview of predictive maintenance based on digital twin technology.

Heliyon. 2023-3-13

[5]
Critical Device Reliability Assessment in Healthcare Services.

J Healthc Eng. 2023

[6]
Deep learning in acute vertigo diagnosis.

J Neurol Sci. 2022-12-15

[7]
Occupational Injury Risk Mitigation: Machine Learning Approach and Feature Optimization for Smart Workplace Surveillance.

Int J Environ Res Public Health. 2022-10-27

[8]
An enhanced CNN-LSTM remaining useful life prediction model for aircraft engine with attention mechanism.

PeerJ Comput Sci. 2022-8-30

[9]
Research trends of artificial intelligence in pancreatic cancer: a bibliometric analysis.

Front Oncol. 2022-8-2

[10]
Towards Integrated Air Pollution Monitoring and Health Impact Assessment Using Federated Learning: A Systematic Review.

Front Public Health. 2022

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索