Abd Wahab Nur Haninie, Hasikin Khairunnisa, Wee Lai Khin, Xia Kaijian, Bei Lulu, Huang Kai, Wu Xiang
Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur, Malaysia.
Engineering Services Division, Ministry of Health Malaysia, Putrajaya, Malaysia.
PeerJ Comput Sci. 2024 Apr 22;10:e1943. doi: 10.7717/peerj-cs.1943. eCollection 2024.
BACKGROUND: Maintaining machines effectively continues to be a challenge for industrial organisations, which frequently employ reactive or premeditated methods. Recent research has begun to shift its attention towards the application of Predictive Maintenance (PdM) and Digital Twins (DT) principles in order to improve maintenance processes. PdM technologies have the capacity to significantly improve profitability, safety, and sustainability in various industries. Significantly, precise equipment estimation, enabled by robust supervised learning techniques, is critical to the efficacy of PdM in conjunction with DT development. This study underscores the application of PdM and DT, exploring its transformative potential across domains demanding real-time monitoring. Specifically, it delves into emerging fields in healthcare, utilities (smart water management), and agriculture (smart farm), aligning with the latest research frontiers in these areas. METHODOLOGY: Employing the Preferred Reporting Items for Systematic Review and Meta-Analyses (PRISMA) criteria, this study highlights diverse modeling techniques shaping asset lifetime evaluation within the PdM context from 34 scholarly articles. RESULTS: The study revealed four important findings: various PdM and DT modelling techniques, their diverse approaches, predictive outcomes, and implementation of maintenance management. These findings align with the ongoing exploration of emerging applications in healthcare, utilities (smart water management), and agriculture (smart farm). In addition, it sheds light on the critical functions of PdM and DT, emphasising their extraordinary ability to drive revolutionary change in dynamic industrial challenges. The results highlight these methodologies' flexibility and application across many industries, providing vital insights into their potential to revolutionise asset management and maintenance practice for real-time monitoring. CONCLUSIONS: Therefore, this systematic review provides a current and essential resource for academics, practitioners, and policymakers to refine PdM strategies and expand the applicability of DT in diverse industrial sectors.
背景:对于经常采用被动或预先计划方法的工业组织来说,有效维护机器仍然是一项挑战。最近的研究已开始将注意力转向预测性维护(PdM)和数字孪生(DT)原则的应用,以改进维护流程。PdM技术有能力显著提高各行业的盈利能力、安全性和可持续性。重要的是,强大的监督学习技术实现的精确设备评估对于PdM与DT开发相结合的有效性至关重要。本研究强调了PdM和DT的应用,探索其在需要实时监测的领域的变革潜力。具体而言,它深入研究了医疗保健、公用事业(智能水管理)和农业(智能农场)等新兴领域,与这些领域的最新研究前沿保持一致。 方法:本研究采用系统评价和荟萃分析的首选报告项目(PRISMA)标准,从34篇学术文章中突出了在PdM背景下塑造资产寿命评估的各种建模技术。 结果:该研究揭示了四个重要发现:各种PdM和DT建模技术、它们的不同方法、预测结果以及维护管理的实施。这些发现与正在进行的对医疗保健、公用事业(智能水管理)和农业(智能农场)等新兴应用的探索相一致。此外,它还阐明了PdM和DT的关键作用,强调了它们在应对动态工业挑战方面推动变革性变化的非凡能力。结果突出了这些方法在许多行业中的灵活性和适用性,为它们在实时监测中革新资产管理和维护实践的潜力提供了重要见解。 结论:因此,本系统评价为学者、从业者和政策制定者完善PdM策略并扩大DT在不同工业部门的适用性提供了当前的重要资源。
PeerJ Comput Sci. 2024-5-14
Sensors (Basel). 2023-8-10
Sensors (Basel). 2024-9-19
Early Hum Dev. 2020-11
MethodsX. 2023-8-22
Heliyon. 2023-3-13
J Healthc Eng. 2023
J Neurol Sci. 2022-12-15
Int J Environ Res Public Health. 2022-10-27
PeerJ Comput Sci. 2022-8-30